期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal 被引量:1
1
作者 Chong Liu Jianzheng Li +1 位作者 Shuo Wang Loring Nies 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第4期147-155,共9页
Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis... Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogene_sis.appeared to be a rate-limiting step in methane termentation, and the enhancement orhydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis. 展开更多
关键词 anaerobic wastewater treatment Methane production Hydrogen-producing acetogenesis Methanogenesis Rate-limiting step Bioaugmentation
原文传递
Control of fermentation types in continuous-flow acidogenic reactors:effects of pH and redox potential 被引量:12
2
作者 任南琪 陈小蕾 赵丹 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第2期116-119,共4页
The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type w... The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type were investigated at different experimental stages of start up, pH regulating and redox potential regulating. The experiments confirmed that butyric acid type fermentation would occur at pH > 6, the propionic acid type fermentation at pH about 5.5 with E h> -278 mV, and the ethanol type fermentation at pH < 4.5. A higher redox potential will lead to propionic acid type fermentation because propionogens are facultative anaerobic bacteria. 展开更多
关键词 wastewater anaerobic treatment acidogenic reactor fermentation types redox potential(OR)
下载PDF
Elucidating the removal mechanism of N,N-dimethyldithiocarbamate in an anaerobic-anoxic-oxic activated sludge system 被引量:2
3
作者 Yongmei Li Xianzhong Cao Lin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第3期566-574,共9页
N,N-Dimethyldithiocarbamate (DMDTC) is a typical precursor of N-nitrosodimethylamine (NDMA). Based on separate hydrolysis, sorption and biodegradation studies of DMDTC, a laboratory-scale anaerobic-anoxic-oxic (... N,N-Dimethyldithiocarbamate (DMDTC) is a typical precursor of N-nitrosodimethylamine (NDMA). Based on separate hydrolysis, sorption and biodegradation studies of DMDTC, a laboratory-scale anaerobic-anoxic-oxic (AAO) system was established to investigate the removal mechanism of DMDTC in this nutrient removal biological treatment system. DMDTC hydrolyzed easily in water solution under either acidic conditions or strong alkaline conditions, and dimethylamine (DMA) was the main hydrolysate. Under anaerobic, anoxic or oxic conditions, DMDTC was biodegraded and completely mineralized. Furthermore, DMA was the main intermediate in DMDTC biodegradation. In the AAO system, the optimal conditions for both nutrient and DMDTC removal were hydraulic retention time 8 hr, sludge retention time 20 day, mixed-liquor return ratio 3:1 and sludge return ratio 1:1. Under these conditions, the removal efficiency of DMDTC reached 99.5%; the removal efficiencies of chemical organic demand, ammonium nitrogen, total nitrogen and total phosphorus were 90%, 98%, 81% and 93%, respectively. Biodegradation is the dominant mechanism for DMDTC removal in the AAO system, which was elucidated as consisting of two steps: first, DMDTC is transformed to DMA in the anaerobic and anoxic units, and then DMA is mineralized to CO2 and NH3 in the anoxic and oxic units. The mineralization of DMDTC in the biological treatment system can effectively avoid the formation of NDMA during subsequent disinfection processes. 展开更多
关键词 N N-dimethyldithioc arbamate hydrolysis biodegradation aerobic processes anaerobic processes wastewater treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部