Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the numbe...Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation.展开更多
磁敏位置传感系统广泛应用于汽车、高端装备和先进制造等领域中。文中设计了一种基于霍尔效应的位置传感系统,可以实现被测物旋转角度的检测。该系统通过由线性霍尔芯片和磁铁组成的传感模块获取旋转角度信息,经信号调理电路处理后由12 ...磁敏位置传感系统广泛应用于汽车、高端装备和先进制造等领域中。文中设计了一种基于霍尔效应的位置传感系统,可以实现被测物旋转角度的检测。该系统通过由线性霍尔芯片和磁铁组成的传感模块获取旋转角度信息,经信号调理电路处理后由12 bit ADC采样转换为数字信号,FPGA读取数据并采用拟合、标准化等算法校准,再利用Cordic算法计算得到被测物旋转角度,最后通过串口屏将测量结果显示。测试结果表明该位置传感系统精度较高,测得的旋转角度误差小于2°。展开更多
通信信号调制识别技术可用于信号确认、干扰识别、电子战对抗以及星间链路通信等方面。针对低噪声下信号调制方式识别率低与识别种类少的问题,提出一种基于神经网络的数字模拟混合信号调制方式识别算法。简化并改进识别特征参数,降低参...通信信号调制识别技术可用于信号确认、干扰识别、电子战对抗以及星间链路通信等方面。针对低噪声下信号调制方式识别率低与识别种类少的问题,提出一种基于神经网络的数字模拟混合信号调制方式识别算法。简化并改进识别特征参数,降低参数对噪声干扰的敏感度,设计基于判决树的自动识别流程。通过自适应学习速率选取最优隐含层节点数,改进BP神经网络算法。结合判决树和改进的神经网络算法,给出基于神经网络的算法调制方式识别方案。仿真结果表明,在信噪比不低于0 d B时,该算法的平均识别成功率达到98%以上。展开更多
文摘Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation.
文摘磁敏位置传感系统广泛应用于汽车、高端装备和先进制造等领域中。文中设计了一种基于霍尔效应的位置传感系统,可以实现被测物旋转角度的检测。该系统通过由线性霍尔芯片和磁铁组成的传感模块获取旋转角度信息,经信号调理电路处理后由12 bit ADC采样转换为数字信号,FPGA读取数据并采用拟合、标准化等算法校准,再利用Cordic算法计算得到被测物旋转角度,最后通过串口屏将测量结果显示。测试结果表明该位置传感系统精度较高,测得的旋转角度误差小于2°。
文摘通信信号调制识别技术可用于信号确认、干扰识别、电子战对抗以及星间链路通信等方面。针对低噪声下信号调制方式识别率低与识别种类少的问题,提出一种基于神经网络的数字模拟混合信号调制方式识别算法。简化并改进识别特征参数,降低参数对噪声干扰的敏感度,设计基于判决树的自动识别流程。通过自适应学习速率选取最优隐含层节点数,改进BP神经网络算法。结合判决树和改进的神经网络算法,给出基于神经网络的算法调制方式识别方案。仿真结果表明,在信噪比不低于0 d B时,该算法的平均识别成功率达到98%以上。