With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to co...With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.展开更多
A microelectromechanical Digital to Analog Converter (DAC) based on Weighted Gap (WG) principle is described,which is analogous to the weighed resistor DAC in electronic circuits.To convert the input of binary vol...A microelectromechanical Digital to Analog Converter (DAC) based on Weighted Gap (WG) principle is described,which is analogous to the weighed resistor DAC in electronic circuits.To convert the input of binary voltage to the output of analog displacement,the gaps are proposed to be employed as a scale factor.A finite element method is used to simulate the performance of the DAC.To reduce the error,the structure design is optimized and the maximum error of 0 002μm is obtained.展开更多
This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. A...This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.展开更多
The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are inv...The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.展开更多
A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sa...A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.展开更多
There are DAC structures available in the literature for radix r = 2, 3, and 4;but how they are arrived at is missing. No general structure is available for any radix r. The aim of the paper is, therefore, to fulfil t...There are DAC structures available in the literature for radix r = 2, 3, and 4;but how they are arrived at is missing. No general structure is available for any radix r. The aim of the paper is, therefore, to fulfil these gaps. To start with, the design relations are derived for the simplest possible attenuator circuit when connected to a voltage source V and a series resistance R, such that the complete circuit offers the Thevenin resistance R. Spread relations for this attenuator are derived. An example when 3 such attenuators with different attenuation constants are connected in cascade is given. Interestingly, the two attenuators with attenuation factors 1/2 and 1/3 have the same spread of 2. A generalized attenuator is then obtained when N number of identical attenuators are connected in cascade. This is modified to derive a digital to analog converter for any radix r.展开更多
A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC ...A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.展开更多
A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损...针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损积分优点的同时具有良好噪声整形效果。设计了一款分辨率为16 bit、采样率为2 Ms/s的混合架构噪声整形SAR ADC。仿真结果表明,在125 kHz带宽、过采样比为8时,实现了高信号与噪声失真比(SNDR(Signal to Noise and Distortion Ratio)为91.1 dB)、高精度(14.84 bit)和低功耗(285μW)的性能。展开更多
针对一阶噪声整形(NS)往往需要增加功耗而以较高的过采样比(OSR)来实现较高的有效位数(ENOB),提出了一种低OSR、低功耗的二阶无源NS SAR ADC。该无源NS模块较高的无源增益可以更好地抑制比较器的噪声;其残差电压是通过开关MOS阵列复用...针对一阶噪声整形(NS)往往需要增加功耗而以较高的过采样比(OSR)来实现较高的有效位数(ENOB),提出了一种低OSR、低功耗的二阶无源NS SAR ADC。该无源NS模块较高的无源增益可以更好地抑制比较器的噪声;其残差电压是通过开关MOS阵列复用积分电容实现采样,从而无需额外的残差采样电容,避免了残差采样电容清零和残差采样时kT/C噪声的产生,因此减小了总的kT/C噪声。180 nm CMOS工艺仿真结果表明,在不使用数字校准的情况下,所设计的10位二阶无源NS SAR ADC电路以100 kS/s的采样率和5的OSR,实现了13.5位ENOB,电路功耗仅为6.98μW。展开更多
The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the ...The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field.展开更多
Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the ...Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the analysis of error sources which influence the resolution of pipelined ADCs. This method estimates the gain error of the ADC prototype quickly and calibrates the ADC simultaneously in the operation time. Finally, a 10 bit, 100 Ms/s pipelined ADC is implemented and calibrated. The simulation results show that the digital calibration technique has its efficiency with fewer operation cycles.展开更多
文摘With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.
文摘A microelectromechanical Digital to Analog Converter (DAC) based on Weighted Gap (WG) principle is described,which is analogous to the weighed resistor DAC in electronic circuits.To convert the input of binary voltage to the output of analog displacement,the gaps are proposed to be employed as a scale factor.A finite element method is used to simulate the performance of the DAC.To reduce the error,the structure design is optimized and the maximum error of 0 002μm is obtained.
基金supported in part by the National Natural Science Foundation of China under Grant No.61006027the New Century Excellent Talents Program of the Ministry of Education of China under Grant No.NCET-10-0297the Fundamental Research Funds for Central Universities under Grant No.ZYGX2012J003
文摘This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.
基金supported by the National Natural Science Foundation of China (Grant No. 11205038)the China Postdoctoral Science Foundation (Grant No. 2012M510951)
文摘The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.
基金The National Science Fund for Creative Re-search Groups( Grant No 60521002 )Shanghai Natural Science Foundation (GrantNo 037062022)
文摘A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.
文摘There are DAC structures available in the literature for radix r = 2, 3, and 4;but how they are arrived at is missing. No general structure is available for any radix r. The aim of the paper is, therefore, to fulfil these gaps. To start with, the design relations are derived for the simplest possible attenuator circuit when connected to a voltage source V and a series resistance R, such that the complete circuit offers the Thevenin resistance R. Spread relations for this attenuator are derived. An example when 3 such attenuators with different attenuation constants are connected in cascade is given. Interestingly, the two attenuators with attenuation factors 1/2 and 1/3 have the same spread of 2. A generalized attenuator is then obtained when N number of identical attenuators are connected in cascade. This is modified to derive a digital to analog converter for any radix r.
文摘A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
文摘针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损积分优点的同时具有良好噪声整形效果。设计了一款分辨率为16 bit、采样率为2 Ms/s的混合架构噪声整形SAR ADC。仿真结果表明,在125 kHz带宽、过采样比为8时,实现了高信号与噪声失真比(SNDR(Signal to Noise and Distortion Ratio)为91.1 dB)、高精度(14.84 bit)和低功耗(285μW)的性能。
文摘针对一阶噪声整形(NS)往往需要增加功耗而以较高的过采样比(OSR)来实现较高的有效位数(ENOB),提出了一种低OSR、低功耗的二阶无源NS SAR ADC。该无源NS模块较高的无源增益可以更好地抑制比较器的噪声;其残差电压是通过开关MOS阵列复用积分电容实现采样,从而无需额外的残差采样电容,避免了残差采样电容清零和残差采样时kT/C噪声的产生,因此减小了总的kT/C噪声。180 nm CMOS工艺仿真结果表明,在不使用数字校准的情况下,所设计的10位二阶无源NS SAR ADC电路以100 kS/s的采样率和5的OSR,实现了13.5位ENOB,电路功耗仅为6.98μW。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10978017 and 61201288)Shaanxi Natural Science Foundation Research Plan Projects,China(Grant No.2014JM2-6128)Shaanxi Major Technological Achievements Transformation and Guidance Special Projects,China(Grant No.2015KTCG01-01)
文摘The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field.
文摘Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the analysis of error sources which influence the resolution of pipelined ADCs. This method estimates the gain error of the ADC prototype quickly and calibrates the ADC simultaneously in the operation time. Finally, a 10 bit, 100 Ms/s pipelined ADC is implemented and calibrated. The simulation results show that the digital calibration technique has its efficiency with fewer operation cycles.