Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAAD...Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.展开更多
This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. A...This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.展开更多
The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are inv...The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.展开更多
An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integra...An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm-1580 nm. A dispersion coefficient as high as -19800 ps/(km.nm) with +0.5 ps/(km.nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective- number-of-bit and Gray code output.展开更多
A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sa...A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.展开更多
We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg gratin...We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.展开更多
A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC ...A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.展开更多
A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
We considered the physiological mechanisms of functioning of the retina’s neural network. It is marked that the primary function of a neural network is an analog-to-digital conversion of the receptor potential of pho...We considered the physiological mechanisms of functioning of the retina’s neural network. It is marked that the primary function of a neural network is an analog-to-digital conversion of the receptor potential of photoreceptor into the pulse-to-digital signal to ganglion cells. We showed the role of different types of neurons in the work of analog-to-digital converter. We gave the equivalent circuit of this converter. We researched the mechanism of the numeric coding of the receptor potential of the photoreceptor.展开更多
With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to co...With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.展开更多
A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to e...A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to eliminate the effect caused by common mode noise. Meanwhile, the digital-to-analog converter (DAC) is a two-stage structure, which can greatly reduce the area of the capacitor array compared with the traditional DAC structure. The capacitance calibration module is mainly divided into the mismatch voltage acquisition phase and the calibration code backfill phase, which effectively reduces the impact of the DAC mismatch on the accuracy of the SAR ADC. The design of this paper is based on cadence platform simulation verification, simulation results show that when the sampling rate is 1 MS/s, the power supply voltage is 5 V and the reference voltage is 4.096 V, the effective number of bits (ENOB) of the ADC is 13.49 bit, and the signal-to-noise ratio (SNR) is 83.3 dB.展开更多
A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and ...A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.展开更多
This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is reali...This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is realized using just four amplifiers with a separate sample-and-hold block. It employs two key techniques: a high bandwidth low-power gain-boosting telescopic amplifiers technique and a low power low offset dynamic comparators technique.The ADC achieves a 8.1 effective number of bits,a maximum differential nonlinearity of a 0.85 least significant bit(LSB), and maximum integral nonlinearity of 2.2LSB for a 0.5MHz input at full sampling rate. It occupies 1.24mm^2 ,which also includes a bandgap and a voltage reference circuit and dissipates only 59mW.展开更多
A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor...A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor mismatch error, a gain-boosting opamp to minimize the finite gain error and gain nonlinearity,a bootstrapping switch to reduce the switch on-resistor nonlinearity, and an anti-disturb design to reduce the noise from the digital supply. This ADC is implemented in 0.18μm CMOS technology and occupies a die area of 3.2mm^2 , including pads. Measured performance includes - 0.18/ 0.15LSB of differential nonlinearity, -0.35/0.5LSB of integral nonlinearity, 75.7dB of signal-to-noise plus distortion ratio (SNDR) and 90. 5 dBc of spurious-free dynamic range (SFDR) for 2.4MHz input at 2.5MS/s. At full speed conversion (5MS/s) and for the same 2.4MHz input, the measured SNDR and SFDR are 73.7dB and 83.9 dBc, respectively. The power dissipation including output pad drivers is 21mW at 2.5MS/s and 34mW at 5MS/s,both at 2.7V supply.展开更多
A novel low-voltage,low constant-impedance switch is proposed, which not only eliminates the parasitic capacitor but also reduces the variation of switch "on" resistance. With the gain-boost technology,the operation...A novel low-voltage,low constant-impedance switch is proposed, which not only eliminates the parasitic capacitor but also reduces the variation of switch "on" resistance. With the gain-boost technology,the operational transconductance amplifier used in this analog-to-digital converter (ADC) achieves enough DC gain and unity-gain frequency under the low voltage supply and to guarantee the performance of the sample and hold circuit (S/H) and the sub-stages. Based on these methods,a 10bit 100Msps pipelined ADC is fabricated in a 0. 18μm CMOS process and operates under a 1.8V voltage supply. The ADC achieves an SNR of 54. 2dB (input frequency of 6.26MHz) and an SNR of 49. 8dB (input frequency of 48. 96MHz) when the sampling frequency is 100MHz.展开更多
A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC b...A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC by adding an additional clock period. This circuit is used in a 10 bit 32 Msample/s time-interleaved SA- ADC. The chip is implemented with Chart 0. 25 μm 2. 5 V process and totally occupies an area of 1.4 mm× 1.3 mm. After calibration, the simulated signal-to-noise ratio (SNR) is 59. 586 1 dB and the spurious-free dynamic range (SFDR) is 70. 246 dB at 32 MHz. The measured signal-to-noise and distortion ratio (SINAD) is 44. 82 dB and the SFDR is 63. 760 4 dB when the ADC samples a 5.8 MHz sinusoid wave.展开更多
A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented witho...A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.展开更多
A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits i...A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits in standard 0. 6μm 2P2M CMOS technology. The modulator uses two balanced reference voltages of ±1V,and is driven by a single 26MHz clock signal. The measurement results show that,with an oversampling ratio of 64, the modulator achieves an 80.6dB dynamic range,a 71.8dB peak SNDR,and a 73.9dB peak SNR in the signal bandwidth of 200kHz. The modulator dissipates 15mW static power from a single 5V supply.展开更多
A low-power 14-bit 150MS/s an- alog-to-digital converter (ADC) is present- ed for communication applications. Range scaling enables a maximal 2-Vp-p input with a single-stage opamp adopted. Opamp and capacitor shari...A low-power 14-bit 150MS/s an- alog-to-digital converter (ADC) is present- ed for communication applications. Range scaling enables a maximal 2-Vp-p input with a single-stage opamp adopted. Opamp and capacitor sharing between the first multi- plying digital-to-analog converter (MDAC) and the second one reduces the total opamp power further. The dedicated sample-and- hold amplifier (SHA) is removed to lower the power and the noise. The blind calibration of linearity errors is proposed to improve the per- formance. The prototype ADC is fabricated in a 130rim CMOS process with a 1.3-V supply voltage. The SNDR of the ADC is 71.3 dB with a 2.4 MHz input and remains 68.5 dB for a 120 MHz input. It consumes 85 roW, which includes 57 mW for the ADC core, 11 mW for the low jitter clock receiver and 17 mW for the high-speed reference buffer.展开更多
We investigate a channel-interleaved photonic analog-to-digital conversion(PADC)system’s ability to work stably over a long duration with an optimal driving voltage.The influence of optimum bias point drift of a Mach...We investigate a channel-interleaved photonic analog-to-digital conversion(PADC)system’s ability to work stably over a long duration with an optimal driving voltage.The influence of optimum bias point drift of a Mach–Zehnder modulator(MZM)-based photonic switch on this system was analyzed theoretically and experimentally.The feasibility of extracting feedback signals from the PADC system was derived.A high-stability channel-interleaved PADC was constructed by extracting a feedback signal from a parallel demultiplexing module to control the MZM-based photonic switch’s driving voltage.Consequently,the amplitude mismatch between the channels was limited to within 0.3 d B over 12 hours of operation.展开更多
文摘Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.
基金supported in part by the National Natural Science Foundation of China under Grant No.61006027the New Century Excellent Talents Program of the Ministry of Education of China under Grant No.NCET-10-0297the Fundamental Research Funds for Central Universities under Grant No.ZYGX2012J003
文摘This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.
基金supported by the National Natural Science Foundation of China (Grant No. 11205038)the China Postdoctoral Science Foundation (Grant No. 2012M510951)
文摘The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-15-030A1)China Postdoctoral Science Foundation(Grant No.2015M580978)
文摘An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm-1580 nm. A dispersion coefficient as high as -19800 ps/(km.nm) with +0.5 ps/(km.nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective- number-of-bit and Gray code output.
基金The National Science Fund for Creative Re-search Groups( Grant No 60521002 )Shanghai Natural Science Foundation (GrantNo 037062022)
文摘A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.
基金Project supported by the National Basic Research Program,China(Grant Nos.2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1202)the Program for New Century Excellent Talents in University,China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications) Chinathe China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.
文摘A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
文摘We considered the physiological mechanisms of functioning of the retina’s neural network. It is marked that the primary function of a neural network is an analog-to-digital conversion of the receptor potential of photoreceptor into the pulse-to-digital signal to ganglion cells. We showed the role of different types of neurons in the work of analog-to-digital converter. We gave the equivalent circuit of this converter. We researched the mechanism of the numeric coding of the receptor potential of the photoreceptor.
文摘With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.
文摘A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to eliminate the effect caused by common mode noise. Meanwhile, the digital-to-analog converter (DAC) is a two-stage structure, which can greatly reduce the area of the capacitor array compared with the traditional DAC structure. The capacitance calibration module is mainly divided into the mismatch voltage acquisition phase and the calibration code backfill phase, which effectively reduces the impact of the DAC mismatch on the accuracy of the SAR ADC. The design of this paper is based on cadence platform simulation verification, simulation results show that when the sampling rate is 1 MS/s, the power supply voltage is 5 V and the reference voltage is 4.096 V, the effective number of bits (ENOB) of the ADC is 13.49 bit, and the signal-to-noise ratio (SNR) is 83.3 dB.
文摘A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.
文摘This paper describes a 3.0V, 10b,40Msample/s analog-to-digital converter (ADC) fabricated in a 0.25μm CMOS technology. Through the sharing an amplifier between two successive pipeline stages, the converter is realized using just four amplifiers with a separate sample-and-hold block. It employs two key techniques: a high bandwidth low-power gain-boosting telescopic amplifiers technique and a low power low offset dynamic comparators technique.The ADC achieves a 8.1 effective number of bits,a maximum differential nonlinearity of a 0.85 least significant bit(LSB), and maximum integral nonlinearity of 2.2LSB for a 0.5MHz input at full sampling rate. It occupies 1.24mm^2 ,which also includes a bandgap and a voltage reference circuit and dissipates only 59mW.
文摘A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor mismatch error, a gain-boosting opamp to minimize the finite gain error and gain nonlinearity,a bootstrapping switch to reduce the switch on-resistor nonlinearity, and an anti-disturb design to reduce the noise from the digital supply. This ADC is implemented in 0.18μm CMOS technology and occupies a die area of 3.2mm^2 , including pads. Measured performance includes - 0.18/ 0.15LSB of differential nonlinearity, -0.35/0.5LSB of integral nonlinearity, 75.7dB of signal-to-noise plus distortion ratio (SNDR) and 90. 5 dBc of spurious-free dynamic range (SFDR) for 2.4MHz input at 2.5MS/s. At full speed conversion (5MS/s) and for the same 2.4MHz input, the measured SNDR and SFDR are 73.7dB and 83.9 dBc, respectively. The power dissipation including output pad drivers is 21mW at 2.5MS/s and 34mW at 5MS/s,both at 2.7V supply.
文摘A novel low-voltage,low constant-impedance switch is proposed, which not only eliminates the parasitic capacitor but also reduces the variation of switch "on" resistance. With the gain-boost technology,the operational transconductance amplifier used in this analog-to-digital converter (ADC) achieves enough DC gain and unity-gain frequency under the low voltage supply and to guarantee the performance of the sample and hold circuit (S/H) and the sub-stages. Based on these methods,a 10bit 100Msps pipelined ADC is fabricated in a 0. 18μm CMOS process and operates under a 1.8V voltage supply. The ADC achieves an SNR of 54. 2dB (input frequency of 6.26MHz) and an SNR of 49. 8dB (input frequency of 48. 96MHz) when the sampling frequency is 100MHz.
文摘A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC by adding an additional clock period. This circuit is used in a 10 bit 32 Msample/s time-interleaved SA- ADC. The chip is implemented with Chart 0. 25 μm 2. 5 V process and totally occupies an area of 1.4 mm× 1.3 mm. After calibration, the simulated signal-to-noise ratio (SNR) is 59. 586 1 dB and the spurious-free dynamic range (SFDR) is 70. 246 dB at 32 MHz. The measured signal-to-noise and distortion ratio (SINAD) is 44. 82 dB and the SFDR is 63. 760 4 dB when the ADC samples a 5.8 MHz sinusoid wave.
文摘A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.
文摘A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits in standard 0. 6μm 2P2M CMOS technology. The modulator uses two balanced reference voltages of ±1V,and is driven by a single 26MHz clock signal. The measurement results show that,with an oversampling ratio of 64, the modulator achieves an 80.6dB dynamic range,a 71.8dB peak SNDR,and a 73.9dB peak SNR in the signal bandwidth of 200kHz. The modulator dissipates 15mW static power from a single 5V supply.
基金supported by the Major National Science & Technology Program of China under Grant No.2012ZX03004004-002National High Technology Research and Development Program of China under Grant No. 2013AA014302
文摘A low-power 14-bit 150MS/s an- alog-to-digital converter (ADC) is present- ed for communication applications. Range scaling enables a maximal 2-Vp-p input with a single-stage opamp adopted. Opamp and capacitor sharing between the first multi- plying digital-to-analog converter (MDAC) and the second one reduces the total opamp power further. The dedicated sample-and- hold amplifier (SHA) is removed to lower the power and the noise. The blind calibration of linearity errors is proposed to improve the per- formance. The prototype ADC is fabricated in a 130rim CMOS process with a 1.3-V supply voltage. The SNDR of the ADC is 71.3 dB with a 2.4 MHz input and remains 68.5 dB for a 120 MHz input. It consumes 85 roW, which includes 57 mW for the ADC core, 11 mW for the low jitter clock receiver and 17 mW for the high-speed reference buffer.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.61571292,61535006,and 61822508).
文摘We investigate a channel-interleaved photonic analog-to-digital conversion(PADC)system’s ability to work stably over a long duration with an optimal driving voltage.The influence of optimum bias point drift of a Mach–Zehnder modulator(MZM)-based photonic switch on this system was analyzed theoretically and experimentally.The feasibility of extracting feedback signals from the PADC system was derived.A high-stability channel-interleaved PADC was constructed by extracting a feedback signal from a parallel demultiplexing module to control the MZM-based photonic switch’s driving voltage.Consequently,the amplitude mismatch between the channels was limited to within 0.3 d B over 12 hours of operation.