With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to co...With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.展开更多
This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. A...This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.展开更多
Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAAD...Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.展开更多
The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are inv...The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.展开更多
A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital c...A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.展开更多
A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sa...A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.展开更多
A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC ...A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.展开更多
A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to e...A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to eliminate the effect caused by common mode noise. Meanwhile, the digital-to-analog converter (DAC) is a two-stage structure, which can greatly reduce the area of the capacitor array compared with the traditional DAC structure. The capacitance calibration module is mainly divided into the mismatch voltage acquisition phase and the calibration code backfill phase, which effectively reduces the impact of the DAC mismatch on the accuracy of the SAR ADC. The design of this paper is based on cadence platform simulation verification, simulation results show that when the sampling rate is 1 MS/s, the power supply voltage is 5 V and the reference voltage is 4.096 V, the effective number of bits (ENOB) of the ADC is 13.49 bit, and the signal-to-noise ratio (SNR) is 83.3 dB.展开更多
A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital con- verter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3...A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital con- verter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input.展开更多
This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A fig...This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.展开更多
A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the prec...A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18-μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0-1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm^2.展开更多
This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked la...This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.展开更多
An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of ...An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of detectors with scalable apertures.展开更多
Apower-efficient 12-bit40-MS/spipelineanalog-to-digitalconverter(ADC)implementedina0.13 μm CMOS technology is presented. A novel CMOS bootstrapping switch, which offers a constant on-resistance over the entire inpu...Apower-efficient 12-bit40-MS/spipelineanalog-to-digitalconverter(ADC)implementedina0.13 μm CMOS technology is presented. A novel CMOS bootstrapping switch, which offers a constant on-resistance over the entire input signal range, is used at the sample-and-hold front-end to enhance the dynamic performance of the pipelined ADC. By implementing with 2.5-bit-per-stage and a simplified amplifier sharing architecture between two successive pipeline stages, a very competitive power consumption and small die area can be achieved. Meanwhile, the substrate-biasing-effect attenuated T-type switches are introduced to reduce the crosstalk between the two op- amp sharing successive stages. Moreover, a two-stage gain boosted recycling folded cascode (RFC) amplifier with hybrid frequency compensation is developed to further reduce the power consumption and maintain the ADC's performance simultaneously. The measured results imply that the ADC achieves a spurious-free dynamic range (SFDR) of 75.7 dB and a signal-to-noise-plus-distortion ratio (SNDR) of 62.74 dB with a 4.3 MHz input signal; the SNDR maintains over 58.25 dB for input signals up to 19.3MHz. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are -0.43 to +0.48 LSB and -1.62 to + 1.89 LSB respectively. The prototype ADC consumes 28.4 mW under a 1.2-V nominal power supply and 40 MHz sampling rate, transferring to a figure- of-merit (FOM) of 0.63 pJ per conversion-step.展开更多
A 2-Gsample/s 8-b analog-to-digital converter in 0.35μm BiCMOS process technology is presented. The ADC uses the unique folding and interpolating algorithm and dual-channel timing interleave multiplexing technology t...A 2-Gsample/s 8-b analog-to-digital converter in 0.35μm BiCMOS process technology is presented. The ADC uses the unique folding and interpolating algorithm and dual-channel timing interleave multiplexing technology to achieve a sampling rate of 2 GSPS.Digital calibration technology is used for the offset and gain corrections of the S/H circuit,the offset correction of preamplifier,and the gain and clock phase corrections between channels.As a result of testing,the ADC achieves 7.32 ENOB at an analog input of 484 MHz and 7.1 ENOB at Nyquist input after the chip is self-corrected.展开更多
This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more se...This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.展开更多
We investigate a channel-interleaved photonic analog-to-digital conversion(PADC)system’s ability to work stably over a long duration with an optimal driving voltage.The influence of optimum bias point drift of a Mach...We investigate a channel-interleaved photonic analog-to-digital conversion(PADC)system’s ability to work stably over a long duration with an optimal driving voltage.The influence of optimum bias point drift of a Mach–Zehnder modulator(MZM)-based photonic switch on this system was analyzed theoretically and experimentally.The feasibility of extracting feedback signals from the PADC system was derived.A high-stability channel-interleaved PADC was constructed by extracting a feedback signal from a parallel demultiplexing module to control the MZM-based photonic switch’s driving voltage.Consequently,the amplitude mismatch between the channels was limited to within 0.3 d B over 12 hours of operation.展开更多
This Letter demonstrates the application of dual-output modulation in a photonic analog-to-digital converter (PADC) with a high sampling rate and resolution. The PADC is time-wavelength interleaved and based on an a...This Letter demonstrates the application of dual-output modulation in a photonic analog-to-digital converter (PADC) with a high sampling rate and resolution. The PADC is time-wavelength interleaved and based on an actively mode-locked laser. According to theoretical analysis, the dual-output PADC system shows a better linearity for achieving a higher dynamic range. In the experiment, third-order distortion is significantly sup- pressed by -40 dB when the dual-output modulator is used and the effective number of bits of the PADC has reached 9.0 bits below 0.2 GHz and 6.4 bits at 6.1 GHz in our PADC with a sampling rate of 20 GS/s.展开更多
We demonstrate a photonic architecture to enable the separation of ultra-wideband signals.The architecture consists of a channel-interleaved photonic analog-to-digital converter(PADC)and a dilated fully convolutional ...We demonstrate a photonic architecture to enable the separation of ultra-wideband signals.The architecture consists of a channel-interleaved photonic analog-to-digital converter(PADC)and a dilated fully convolutional network(DFCN).The aim of the PADC is to perform ultra-wideband signal acquisition,which introduces the mixing of signals between different frequency bands.To alleviate the interference among wideband signals,the DFCN is applied to reconstruct the waveform of the target signal from the ultra-wideband mixed signals in the time domain.The channel-interleaved PADC provides a wide spectrum reception capability.Relying on the DFCN reconstruction algorithm,the ultra-wideband signals,which are originally mixed up,are effectively separated.Additionally,experimental results show that the DFCN reconstruction algorithm improves the average bit error rate by nearly three orders of magnitude compared with that without the algorithm.展开更多
The total dose effect of an AD678 with a BiMOS process is studied.We investigate the performance degradation of the device in different bias states and at several dose rates.The results show that an AD678 can endure 3...The total dose effect of an AD678 with a BiMOS process is studied.We investigate the performance degradation of the device in different bias states and at several dose rates.The results show that an AD678 can endure 3 krad(Si) at low dose rate and 5 krad(Si) at a high dose rate for static bias.The sensitive parameters to the bias states also differ distinctly.We find that the degradation is more serious on static bias.The underlying mechanisms are discussed in detail.展开更多
文摘With the continuous development of science and technology, digital signal processing is more and more widely used in various fields. Among them, the analog-to-digital converter (ADC) is one of the key components to convert analog signals to digital signals. As a common type of ADC, 12-bit sequential approximation analog-to-digital converter (SAR ADC) has attracted extensive attention for its performance and application. This paper aims to conduct in-depth research and analysis of 12-bit SAR ADC to meet the growing demands of digital signal processing. This article designs a 12-bit, successive approximation analog-to-digital converter (SAR ADC) with a sampling rate of 5 MS/s. The overall circuit adopts a fully differential structure, with key modules including DAC capacitor array, comparator, and control logic. According to the DAC circuit in this paper, a fully differential capacitor DAC array structure is proposed to reduce the area of layout DAC. The comparator uses a digital dynamic comparator to improve the ADC conversion speed. The chip is designed based on the SMIC180 nm CMOS process. The simulation results show that when the sampling rate is 5 MS/s, the effective bit of SAR ADC is 11.92 bit, the SNR is 74.62 dB, and the SFDR is 89.24 dB.
基金supported in part by the National Natural Science Foundation of China under Grant No.61006027the New Century Excellent Talents Program of the Ministry of Education of China under Grant No.NCET-10-0297the Fundamental Research Funds for Central Universities under Grant No.ZYGX2012J003
文摘This paper makes a review of state-of-the- arts designs of successive-approximation register analog-to-digital converters (SAR ADCs). Methods and technique specifications are collected in view of innovative ideas. At the end of this paper, a design example is given to illustrate the procedure to design an SAR ADC. A new method, which extends the width of the internal clock, is also proposed to facilitate different sampling frequencies, which provides more time for the digital-to-analog convert (DAC) and comparator to settle. The 10 bit ADC is simulated in 0.13 μm CMOS process technology. The signal-to-noise and distortion ratio (SNDR) is 54.41 dB at a 10 MHz input with a 50 MS/s sampling rate, and the power is 330 μW.
文摘Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.
基金supported by the National Natural Science Foundation of China (Grant No. 11205038)the China Postdoctoral Science Foundation (Grant No. 2012M510951)
文摘The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux.
文摘A novel optical analog-to-digital converter based on optical time division multiplexing(OTDM) is described which uses electrooptic sampling and time-demultiplexing together with multiple electronic analog-to-digital converter(ADC). Compared with the previous scheme, the time-division multiplexer and the time-division demultiplexer are applied in the optical analog-to-digital converter(OADC) at the same time, the design of the OADC is simplified and the performance of the OADC based on time-division demultiplexer is improved. A core optical part of the system is demonstrated with a sample rate of 10 Gs/s. The signals in three channels are demultiplexed from the optical pulses.The result proves our scheme is feasible.
基金The National Science Fund for Creative Re-search Groups( Grant No 60521002 )Shanghai Natural Science Foundation (GrantNo 037062022)
文摘A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC). The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge. Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers. The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.
文摘A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.
文摘A 14-bit successive approximation analog-to-digital converter (SAR ADC) with capacitive calibration has been designed based on the SMIC. 18 μm CMOS process. The overall architecture is in fully differential form to eliminate the effect caused by common mode noise. Meanwhile, the digital-to-analog converter (DAC) is a two-stage structure, which can greatly reduce the area of the capacitor array compared with the traditional DAC structure. The capacitance calibration module is mainly divided into the mismatch voltage acquisition phase and the calibration code backfill phase, which effectively reduces the impact of the DAC mismatch on the accuracy of the SAR ADC. The design of this paper is based on cadence platform simulation verification, simulation results show that when the sampling rate is 1 MS/s, the power supply voltage is 5 V and the reference voltage is 4.096 V, the effective number of bits (ENOB) of the ADC is 13.49 bit, and the signal-to-noise ratio (SNR) is 83.3 dB.
基金Project supported by the National Natural Science Foundation of China(Nos.60906009,60773025)the Postdoctoral Science Foundation of China(No.20090451423)the National Labs of Analog Integrated Circuits Foundation(No.9140C0901110902)
文摘A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital con- verter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input.
基金partially supported by the National Natural Science Foundation of China(Nos.61822508,61571292,and 61535006)
文摘This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.
基金supported by National Natural Science Foundation of China under grant No.61704161Key Project of Natural Science of Anhui Provincial Department of Education under grant No.KJ2017A396
文摘A feed-forward Common-Mode (CM) charge control circuit for a high-speed Charge-Domain (CO) pipelined Analog-to-Digital Converter (ADC) is presented herein. This study aims at solving the problem whereby the precision of CD pipelined ADCs is restricted by the variation in input CM charge, which can compensate for CM charge errors caused by a variation in CM charge input in real time. Based on the feed-forward CM charge control circuit, a 12-bit 250-MS/s CD pipelined ADC is designed and realized using a 1P6M 0.18-μm CMOS process. The ADC achieved a Spurious Free Dynamic Range (SFDR) of 78.1 dB and a Signal-to-Noise-and-Distortion Ratio (SNDR) of 64.6 dB for a 20.1-MHz input; a SFDR of 74.9 dB and SNDR of 62.0 dB were achieved for a 239.9-MHz input at full sampling rate. The variation in signal-to-noise ratio was less than 3 dB over a 0-1.2 V input CM voltage range. The power consumption of the prototype ADC is only 85 mW at 1.8 V supply, and it occupies an active die area of 2.24 mm^2.
基金partially supported by the National Natural Science Foundation of China(Nos.61571292and 61535006)
文摘This Letter demonstrates the effectiveness of a high-speed high-resolution photonic analog-to-digital converter (PADC) for wideband signal detection. The PADC system is seeded by a high-speed actively mode locked laser, and the sampling rate is multiplied via a time-wavelength interleaving scheme. According to the laboratory test, an X-band linear frequency modulation signal is detected and digitized by the PADC system. The channel mismatch effect in wideband signal detection is compensated via an algorithm based on a short-time Fourier transform. Consequently, the signal-to-distortion ratio (SDR) of the wideband signal detection is enhanced to the comparable SDR of the single-tone signal detection.
文摘An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of detectors with scalable apertures.
基金Project supported by the National Science and Technology Major Projects of China(No.2012ZX03001018-001)the Fundamental Research Funds for the Central Universities,China(No.K50511250006)
文摘Apower-efficient 12-bit40-MS/spipelineanalog-to-digitalconverter(ADC)implementedina0.13 μm CMOS technology is presented. A novel CMOS bootstrapping switch, which offers a constant on-resistance over the entire input signal range, is used at the sample-and-hold front-end to enhance the dynamic performance of the pipelined ADC. By implementing with 2.5-bit-per-stage and a simplified amplifier sharing architecture between two successive pipeline stages, a very competitive power consumption and small die area can be achieved. Meanwhile, the substrate-biasing-effect attenuated T-type switches are introduced to reduce the crosstalk between the two op- amp sharing successive stages. Moreover, a two-stage gain boosted recycling folded cascode (RFC) amplifier with hybrid frequency compensation is developed to further reduce the power consumption and maintain the ADC's performance simultaneously. The measured results imply that the ADC achieves a spurious-free dynamic range (SFDR) of 75.7 dB and a signal-to-noise-plus-distortion ratio (SNDR) of 62.74 dB with a 4.3 MHz input signal; the SNDR maintains over 58.25 dB for input signals up to 19.3MHz. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are -0.43 to +0.48 LSB and -1.62 to + 1.89 LSB respectively. The prototype ADC consumes 28.4 mW under a 1.2-V nominal power supply and 40 MHz sampling rate, transferring to a figure- of-merit (FOM) of 0.63 pJ per conversion-step.
文摘A 2-Gsample/s 8-b analog-to-digital converter in 0.35μm BiCMOS process technology is presented. The ADC uses the unique folding and interpolating algorithm and dual-channel timing interleave multiplexing technology to achieve a sampling rate of 2 GSPS.Digital calibration technology is used for the offset and gain corrections of the S/H circuit,the offset correction of preamplifier,and the gain and clock phase corrections between channels.As a result of testing,the ADC achieves 7.32 ENOB at an analog input of 484 MHz and 7.1 ENOB at Nyquist input after the chip is self-corrected.
基金supported by the National Natural Science Foundation of China(No.11005152)
文摘This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.61571292,61535006,and 61822508).
文摘We investigate a channel-interleaved photonic analog-to-digital conversion(PADC)system’s ability to work stably over a long duration with an optimal driving voltage.The influence of optimum bias point drift of a Mach–Zehnder modulator(MZM)-based photonic switch on this system was analyzed theoretically and experimentally.The feasibility of extracting feedback signals from the PADC system was derived.A high-stability channel-interleaved PADC was constructed by extracting a feedback signal from a parallel demultiplexing module to control the MZM-based photonic switch’s driving voltage.Consequently,the amplitude mismatch between the channels was limited to within 0.3 d B over 12 hours of operation.
基金supported by the National Natural Science Foundation of China(Nos.61535006 and 61571292)the Specialized Research Fund within the Doctoral Program through the Ministry of Education(No.20130073130005)the State Key Laboratory Project of Shanghai Jiao Tong University(No.2014ZZ03016)
文摘This Letter demonstrates the application of dual-output modulation in a photonic analog-to-digital converter (PADC) with a high sampling rate and resolution. The PADC is time-wavelength interleaved and based on an actively mode-locked laser. According to theoretical analysis, the dual-output PADC system shows a better linearity for achieving a higher dynamic range. In the experiment, third-order distortion is significantly sup- pressed by -40 dB when the dual-output modulator is used and the effective number of bits of the PADC has reached 9.0 bits below 0.2 GHz and 6.4 bits at 6.1 GHz in our PADC with a sampling rate of 20 GS/s.
基金the National Key R&D Program of China(No.2019YFB2203700)the National Natu ral Science Foundation of China(Nos.61822508 and 61571292).
文摘We demonstrate a photonic architecture to enable the separation of ultra-wideband signals.The architecture consists of a channel-interleaved photonic analog-to-digital converter(PADC)and a dilated fully convolutional network(DFCN).The aim of the PADC is to perform ultra-wideband signal acquisition,which introduces the mixing of signals between different frequency bands.To alleviate the interference among wideband signals,the DFCN is applied to reconstruct the waveform of the target signal from the ultra-wideband mixed signals in the time domain.The channel-interleaved PADC provides a wide spectrum reception capability.Relying on the DFCN reconstruction algorithm,the ultra-wideband signals,which are originally mixed up,are effectively separated.Additionally,experimental results show that the DFCN reconstruction algorithm improves the average bit error rate by nearly three orders of magnitude compared with that without the algorithm.
文摘The total dose effect of an AD678 with a BiMOS process is studied.We investigate the performance degradation of the device in different bias states and at several dose rates.The results show that an AD678 can endure 3 krad(Si) at low dose rate and 5 krad(Si) at a high dose rate for static bias.The sensitive parameters to the bias states also differ distinctly.We find that the degradation is more serious on static bias.The underlying mechanisms are discussed in detail.