A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated ...A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated and compared with pure Q-phase cement.The results indicate that the ternary system exhibits exceptional and sustained compressive strength even under a 40℃environment,significantly outperforming pure Q-phase.The mechanism lies in that metakaolin effectively inhibits the transformation of metastable phase.Meanwhile,the interactions among Q-phase,limestone,and metakaolin further enhance the cementitious performance.The ternary system effectively addresses potential issues of strength loss in Q-phase cement application,and as a low-carbon cementitious material system,it holds promising potential applications.展开更多
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m...The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwate...Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.展开更多
Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure...Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.展开更多
Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential comm...Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.展开更多
Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL...Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.展开更多
The hydrocarbon generation effectiveness of lacustrine limestone has been gradually proven. The Da'anzhai Member limestone is the most important Jurassic oil-producing layer in the central Sichuan Basin, and the c...The hydrocarbon generation effectiveness of lacustrine limestone has been gradually proven. The Da'anzhai Member limestone is the most important Jurassic oil-producing layer in the central Sichuan Basin, and the characteristics of limestone organic matter are often overlooked. 175 typical samples of different lithologies from 19 wells were systematically analyzed to determine hydrocarbon generation, controlling factors and formation models by analyses of organic matter, minerals, elements, isotopes and petrography. (1) Lacustrine paleoenvironments can be beneficial for the enrichment of organic matter in limestone. A favorable environment would be a quiet, low-energy zone in a warm and humid climate with an appropriate supply of terrestrial inputs. (2) Lacustrine limestone has a higher organic matter conversion rate, and a lower hydrocarbon generation threshold than argillaceous source rocks, and can be effective source rock. (3) The mud-bearing shell limestone from the forebeach to the lake slope is thick, with a relatively high abundance of organic matter, and its hydrocarbon generation is effective. This study can clarify the effectiveness and enrichment of the limestone organic matters in the study area, and contribute to an understanding of hydrocarbon generation for full-rock system in a lacustrine mixed sedimentary environment.展开更多
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv...Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas.展开更多
Compared with the control sample without limestone powder(LP), the mechanical properties of the sample with 30% LP can be significantly improved by using a small amount of water reducer to reduce the water-cement rati...Compared with the control sample without limestone powder(LP), the mechanical properties of the sample with 30% LP can be significantly improved by using a small amount of water reducer to reduce the water-cement ratio, without significantly affecting the fluidity of the fresh mixture and increasing the economic cost. In addition, compared with the sole addition of limestone powder, dual addition of metakaolin and limestone powder can effectively improve the strengths. The reason of this phenomenon was investigated by means of XRD, TG-DTG, SEM, LF-NMR and isothermal calorimetry, etc. The reactive aluminum-rich phases in metakaolin react with limestone powder in the hydration process, and the formed calcium carboaluminate reduces the porosity and makes the hardened paste denser. The addition of ground granulated blast furnace slag can also improve the strength of the specimen added with limestone powder, whereas, the effect is inferior to that of metakaolin, for the ground granulated blast furnace slag contains less reactive aluminate phases, and accordingly, the amount of calcium carboaluminate generated is lower than that of metakaolin.展开更多
Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat...Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural setting.In the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 approximately.The joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block size.The high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic fractures.The presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of fracture.This research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks.展开更多
Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of indus...Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials.展开更多
Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Ea...Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey.展开更多
The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most o...The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.展开更多
Limestones of different facies in the Senegal basin are most commonly used as aggregates, regardless of their petrographic properties. These differences may influence their behaviour. The aim of this paper is to study...Limestones of different facies in the Senegal basin are most commonly used as aggregates, regardless of their petrographic properties. These differences may influence their behaviour. The aim of this paper is to study the stratigraphy and characterise the limestones of the Bandia and Popenguine quarries. Sampling and geochemical and geotechnical characterisation were carried out on these limestones. The results show the presence of several very different facies in the Paleocene formation. The geochemical study shows that the Bandia limestones (Bd2) have the highest CaCO<sub>3</sub> percentages (98.54%) and the highest SiO<sub>2</sub> percentages were recorded in the Popenguine limestones (Pop2). The study also gives MDE values of 22.38 and LA of 22, which are acceptable for use in road construction. It is important to carry out a complete study in order to select the right materials for optimal use.展开更多
[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific...[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific breeding of vegetation used to restore the mountain field in limestone region.[Method] Based on the investigation of various vegetation communities in controlled test area,forbidden region and barren hillsides in Daqing Mountain basin,Beishui Valley,Mancheng County,Hebei Province,the difference among controlled region,forbidden region and barren hillsides could be found through data analysis and composite score,and the modes of vegetation communities in controlled region and forbidden region were compared to select predominant species of arbor,shrub and grass in limestone region.[Result] Under the similar site conditions,nutrient content and physical properties of soil in controlled region and forbidden region were superior to those of barren hillsides,and persimmon had high nutrient content and better physical properties compared with oriental arborvitae in controlled region;soil water maintenance and litter characters in controlled region and forbidden region improved more obviously than that of barren hillsides,and shrubbery in forbidden region was the most excellent,arborvitae and persimmon in controlled region the second;the biomass and the coverage rate of vegetation communities in controlled region and forbidden region were higher than those of barren hillsides,and those of shrubbery in forbidden region were better than tussock in closing hill,while persimmon was better than arborvitae in controlled region.The predominant species of arbor,shrub and herbage were obtained through composite score.[Conclusion] From the aspects of soil nutrient,physical properties,soil water maintenance,litter characters,vegetation biomass,canopy density and coverage,controlled region and forbidden region were superior to barren hillsides,and the selection of predominant species of arbor,shrub and herbage considered both ecological and economic benefits.展开更多
Ordovician limestone water is coal mines. In this paper, we analyze the the main source of water inrush in North China characteristic of three kinds of nonlinear seismic attributes, such as the largest lyapunov expone...Ordovician limestone water is coal mines. In this paper, we analyze the the main source of water inrush in North China characteristic of three kinds of nonlinear seismic attributes, such as the largest lyapunov exponent,fractal dimension and entropy and introduce their calculation methods. Taking the 81st and 82nd coal districts in the Xutuan coal mine as examples, we extract the three seismic attributes based on the 3D prestack migration seismic data of this area, which can display the Ordovician limestone fracture distribution in the mine. We comprehensively analyzed the three nonlinear seismic attributes and compared the results with transient electromagnetic exploration results and determined the possible Ordovician limestone aquosity distribution. This demonstrated that the nonlinear seismic attributes technology is an effective approach to predict the aquosity of Ordovician limestone.展开更多
The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stag...The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.展开更多
Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the...Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.展开更多
Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper,...Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.展开更多
基金Funded by the National Natural Science Foundation of China(No.52172026)the Science and Technology Development Project of China Railway Design Corporation(Nos.2023A0226407 and 2023B03040003)。
文摘A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated and compared with pure Q-phase cement.The results indicate that the ternary system exhibits exceptional and sustained compressive strength even under a 40℃environment,significantly outperforming pure Q-phase.The mechanism lies in that metakaolin effectively inhibits the transformation of metastable phase.Meanwhile,the interactions among Q-phase,limestone,and metakaolin further enhance the cementitious performance.The ternary system effectively addresses potential issues of strength loss in Q-phase cement application,and as a low-carbon cementitious material system,it holds promising potential applications.
基金supported by the National Natural Science Foundation of China(Grant No.52090081)the State Key Laboratory of Hydroscience and Engineering(Grant No.2022-KY-02).
文摘The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金funded by the National Key R&D Program of China(2023YFC3806800).
文摘Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.
基金supported by the National Natural Science Foundation for Excellent Young Scholars of China(No.52222110)the Natural Science Foundation of Jiangsu Province(No.BK20211230).
文摘Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.
基金supported by the National Natural Science Foundation of China(NSFC:32260268)the Science and Technology Project of Guizhou Province[(2021)General-455]the Guizhou Hundred-level Innovative Talents Project[Qian-ke-he platform talents(2020)6004-2].
文摘Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267 and 41877260)the Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13010201).
文摘Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.
基金supported by the National Natural Science Foundation of China(Grants 41902131 and 41821002 and 4169130014).
文摘The hydrocarbon generation effectiveness of lacustrine limestone has been gradually proven. The Da'anzhai Member limestone is the most important Jurassic oil-producing layer in the central Sichuan Basin, and the characteristics of limestone organic matter are often overlooked. 175 typical samples of different lithologies from 19 wells were systematically analyzed to determine hydrocarbon generation, controlling factors and formation models by analyses of organic matter, minerals, elements, isotopes and petrography. (1) Lacustrine paleoenvironments can be beneficial for the enrichment of organic matter in limestone. A favorable environment would be a quiet, low-energy zone in a warm and humid climate with an appropriate supply of terrestrial inputs. (2) Lacustrine limestone has a higher organic matter conversion rate, and a lower hydrocarbon generation threshold than argillaceous source rocks, and can be effective source rock. (3) The mud-bearing shell limestone from the forebeach to the lake slope is thick, with a relatively high abundance of organic matter, and its hydrocarbon generation is effective. This study can clarify the effectiveness and enrichment of the limestone organic matters in the study area, and contribute to an understanding of hydrocarbon generation for full-rock system in a lacustrine mixed sedimentary environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.41977248 and 42207219)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(CAS)(Grant No.IGGCAS-201903).
文摘Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas.
基金Funded by the National Natural Science Foundation of China (Nos.51972249, 52172026, 51772226)。
文摘Compared with the control sample without limestone powder(LP), the mechanical properties of the sample with 30% LP can be significantly improved by using a small amount of water reducer to reduce the water-cement ratio, without significantly affecting the fluidity of the fresh mixture and increasing the economic cost. In addition, compared with the sole addition of limestone powder, dual addition of metakaolin and limestone powder can effectively improve the strengths. The reason of this phenomenon was investigated by means of XRD, TG-DTG, SEM, LF-NMR and isothermal calorimetry, etc. The reactive aluminum-rich phases in metakaolin react with limestone powder in the hydration process, and the formed calcium carboaluminate reduces the porosity and makes the hardened paste denser. The addition of ground granulated blast furnace slag can also improve the strength of the specimen added with limestone powder, whereas, the effect is inferior to that of metakaolin, for the ground granulated blast furnace slag contains less reactive aluminate phases, and accordingly, the amount of calcium carboaluminate generated is lower than that of metakaolin.
基金The authors express their gratitude to the Natural Sciences and Engineering Research Council of Canada for financial support through a Discovery Grant(Grant No.06408).
文摘Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural setting.In the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 approximately.The joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block size.The high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic fractures.The presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of fracture.This research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks.
文摘Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials.
文摘Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey.
基金Key Research and Development Plan of Shaanxi Province(2019TSLGY05-04).
文摘The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.
文摘Limestones of different facies in the Senegal basin are most commonly used as aggregates, regardless of their petrographic properties. These differences may influence their behaviour. The aim of this paper is to study the stratigraphy and characterise the limestones of the Bandia and Popenguine quarries. Sampling and geochemical and geotechnical characterisation were carried out on these limestones. The results show the presence of several very different facies in the Paleocene formation. The geochemical study shows that the Bandia limestones (Bd2) have the highest CaCO<sub>3</sub> percentages (98.54%) and the highest SiO<sub>2</sub> percentages were recorded in the Popenguine limestones (Pop2). The study also gives MDE values of 22.38 and LA of 22, which are acceptable for use in road construction. It is important to carry out a complete study in order to select the right materials for optimal use.
基金Supported by Hebei Province Natural Foundation (3993173)~~
文摘[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific breeding of vegetation used to restore the mountain field in limestone region.[Method] Based on the investigation of various vegetation communities in controlled test area,forbidden region and barren hillsides in Daqing Mountain basin,Beishui Valley,Mancheng County,Hebei Province,the difference among controlled region,forbidden region and barren hillsides could be found through data analysis and composite score,and the modes of vegetation communities in controlled region and forbidden region were compared to select predominant species of arbor,shrub and grass in limestone region.[Result] Under the similar site conditions,nutrient content and physical properties of soil in controlled region and forbidden region were superior to those of barren hillsides,and persimmon had high nutrient content and better physical properties compared with oriental arborvitae in controlled region;soil water maintenance and litter characters in controlled region and forbidden region improved more obviously than that of barren hillsides,and shrubbery in forbidden region was the most excellent,arborvitae and persimmon in controlled region the second;the biomass and the coverage rate of vegetation communities in controlled region and forbidden region were higher than those of barren hillsides,and those of shrubbery in forbidden region were better than tussock in closing hill,while persimmon was better than arborvitae in controlled region.The predominant species of arbor,shrub and herbage were obtained through composite score.[Conclusion] From the aspects of soil nutrient,physical properties,soil water maintenance,litter characters,vegetation biomass,canopy density and coverage,controlled region and forbidden region were superior to barren hillsides,and the selection of predominant species of arbor,shrub and herbage considered both ecological and economic benefits.
文摘Ordovician limestone water is coal mines. In this paper, we analyze the the main source of water inrush in North China characteristic of three kinds of nonlinear seismic attributes, such as the largest lyapunov exponent,fractal dimension and entropy and introduce their calculation methods. Taking the 81st and 82nd coal districts in the Xutuan coal mine as examples, we extract the three seismic attributes based on the 3D prestack migration seismic data of this area, which can display the Ordovician limestone fracture distribution in the mine. We comprehensively analyzed the three nonlinear seismic attributes and compared the results with transient electromagnetic exploration results and determined the possible Ordovician limestone aquosity distribution. This demonstrated that the nonlinear seismic attributes technology is an effective approach to predict the aquosity of Ordovician limestone.
基金The National Natural Science Foundation of China(No.51276064)the Natural Science Foundation of Hebei Province(No.E2013502292)
文摘The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.
文摘Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.
文摘Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.