For the first time, this paper introduces Petri net theory to the domain of enterprise strategy management, puts forword a new way by using Petri net to analyse and describe the formulating process of enterprise merge...For the first time, this paper introduces Petri net theory to the domain of enterprise strategy management, puts forword a new way by using Petri net to analyse and describe the formulating process of enterprise merger and acquisition strategies, provides a clear and simple tool for supporting the management bureau of enterprise to make its merger and acquisition strategies.展开更多
In this paper, a whole field solution to finite internally cracked plates is derived by complex variable method, where the equations of equilibrium and compatibility, the single value condition of displacements and th...In this paper, a whole field solution to finite internally cracked plates is derived by complex variable method, where the equations of equilibrium and compatibility, the single value condition of displacements and the traction-free condition on crack surfaces are satisfied exactly. The stress intensity factors of finite plates with central crack or eccentric crack or cracks emanating from a hole are calculated by using minimum potential energy principle to treat the boundary conditions excluding those on crack surfaces. As an application of the method to engineering problems, the computation about a finite rivet joint stiffened plate with cracks emanating from a hole is also performed. The numerical results show that the method presented in this paper gives rapid convergence and is much time-saving in computations.展开更多
Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest s...Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites.Methods: Here, we present an extension of the original design and evaluation by Nelder.(i) We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density.(ii) We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation.(iii)We prove the usefulness of the methods in improving ecological theory concerning density related productivity,trade-offs between facilitation and competition, and allometric relations between size variables.Results: First evaluations based on remeasured Nelder wheels in oak(Quercus robur L.) show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations.Conclusions: The proposed design, methods, and results are discussed regarding their impact on forest practice,model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level information.展开更多
The aim of this paper is to present the design and specifications of an integrated Delay Analysis Framework(DAF),which could be used to quantify the delay caused by the Risk Factors(RFs)in Oil and Gas Pipelines(OGPs)p...The aim of this paper is to present the design and specifications of an integrated Delay Analysis Framework(DAF),which could be used to quantify the delay caused by the Risk Factors(RFs)in Oil and Gas Pipelines(OGPs)projects in a simple and systematic way.The main inputs of the DAF are(i)the potential list of RFs in the projects and their impact levels on the projects and the estimated maximum and minimum duration of each task.Monte Carlo Simulation integrated within@Risk simulator was the key process algorithm that used to quantify the impact of delay caused by the associated RFs.The key output of the DAF is the amount of potential delay caused by RFs in the OGP project.The functionalities of the developed DAF were evaluated using a case study of newly developed OGP project,in the south of Iraq.It is found that the case study project might have delayed by 45 days if neglected the consideration of the RFs associated with the project at the construction stage.The paper concludes that identifying the associated RFs and analysing the potential delay in advance will help in reducing the construction delay and improving the effectiveness of the project delivery by taking suitable risk mitigation measures.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by mu...This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.展开更多
Ongoing encroachment is driving recent alpine shrubline dynamics globally,but the role of shrub-shrub interactions in shaping shrublines and their relationships with stem density changes remain poorly understood.Here,...Ongoing encroachment is driving recent alpine shrubline dynamics globally,but the role of shrub-shrub interactions in shaping shrublines and their relationships with stem density changes remain poorly understood.Here,the size and age of shrubs from 26 Salix shrubline populations along a 900-km latitudinal gradient(30°-38°N)were measured and mapped across the eastern Tibetan Plateau.Point pattern analyses were used to quantify the spatial distribution patterns of juveniles and adults,and to assess spatial associations between them.Mean intensity of univariate and bivariate spatial patterns was related to biotic and abiotic variables.Bivariate mark correlation functions with a quantitative mark(shrub height,basal stem diameter,crown width)were also employed to investigate the spatial relationships between shrub traits of juveniles and adults.Structural equation models were used to explore the relationships among conspecific interactions,patterns,shrub traits and recruitment dynamics under climate change.Most shrublines showed clustered patterns,suggesting the existence of conspecific facilitation.Clustered patterns of juveniles and conspecific interactions(potentially facilitation)tended to intensify with increasing soil moisture stress.Summer warming before 2010 triggered positive effects on population interactions and spatial patterns via increased shrub recruitment.However,summer warming after2010 triggered negative effects on interactions through reduced shrub recruitment.Therefore,shrub recruitment shifts under rapid climate change could impact spatial patterns,alter conspecific interactions and modify the direction and degree of shrublines responses to climate.These changes would have profound implications for the stability of alpine woody ecosystems.展开更多
Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To addres...Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry.展开更多
Objective To screen the target genes that are associated with survival of breast cancer(BRCA) and explore their prognostic values and immune correlations with BRCA using multiple databases..Methods The microarray expr...Objective To screen the target genes that are associated with survival of breast cancer(BRCA) and explore their prognostic values and immune correlations with BRCA using multiple databases..Methods The microarray expression datasets of BRCA were downloaded from the Gene Expresssion Omnibus database(GEO) and analyzed to obtain differentially expressed genes(DEGs). Hub genes were obtained by constructing and visualizing the protein-protein interaction network of DEGs. The key gene was determined using R language, STRING, and Cytoscape, and the differential expression of the key gene was verified using external datasets The Cancer Genome Atlas(TCGA) and quantitative real-time PCR(q RT-PCR) for BRCA tissues of 37 patients. The prognostic value and immunological correlation of UBE2C in BRCA were explored using R language, TIMER, and Gene Set Enrichment Analysis(GSEA).Results Of 10 hub genes seleceed from 302 DEGS, UBE2C was identified as the gene associated with BRCA survival. The expression of UBE2C was differentially upregulated in BRCA, as verified by TCGA and q RT-PCR. Prognostic analysis revealed that UBE2C served as an independent prognostic factor. High expression of UBE2C was associated with decreased immune infiltration levels of B cells, CD4+ T cells, CD8+ T cells, macrophages, and myeloid dendritic cells in BRCA tissue. The expression of UBE2C in BRCA showed a significant correlation with immune checkpoints genes PDCD1, CD274, and CTLA4 expressions. There was a positive correlation between the expression of UBE2C and the tumor mutational burden and microsatellite instability. GSEA demonstrated that UBE2C expression significantly enriched 786 immune-related gene sets.Conclusions UBE2C expression in BRCA tissues is closely related to the BRCA immune microenvironment and showes predictive values on the survivals and prognosis of BRCA patients and the effecacy of immunotherapy. UBE2C may be an potential immune-related prognostic biomarker for BRCA.展开更多
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t...A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.展开更多
A new species of the genus Liurana is described from Medog,Xizang,China,based on morphological and molecular data.Molecular phylogenetic analysis based on the mitochondrial gene COI indicated that this new species rep...A new species of the genus Liurana is described from Medog,Xizang,China,based on morphological and molecular data.Molecular phylogenetic analysis based on the mitochondrial gene COI indicated that this new species represented an independent evolutionary lineage.In addition,the uncorrected genetic distance between the new species and its closest congener species,L.alpina,was 9.6%-9.8%for COI.The new species,Liurana namchabarwa sp.nov.Yu,Lin,Wang,Jiang and Xie,could be distinguished from its congeners by following characters:(1)relatively large body size in this genus,SVL=21.2-23.1 mm in adult males(n=3);(2)relatively narrow head(HL/HW=100.5%-104.8%(n=3));(3)digital disc not expanded;(4)relatively long hindlimbs,with tibiotarsal articulation reaching tip of snout when adpressed.展开更多
BACKGROUND Cholangiocarcinoma(CCA)is a highly malignant biliary tract cancer with poor prognosis.Previous studies have implicated the gut microbiota in CCA,but evidence for causal mechanisms is lacking.AIM To investig...BACKGROUND Cholangiocarcinoma(CCA)is a highly malignant biliary tract cancer with poor prognosis.Previous studies have implicated the gut microbiota in CCA,but evidence for causal mechanisms is lacking.AIM To investigate the causal relationship between gut microbiota and CCA risk.METHODS We performed a two-sample mendelian randomization study to evaluate potential causal associations between gut microbiota and CCA risk using genome-wide association study summary statistics for 196 gut microbial taxa and CCA.Genetic variants were used as instrumental variables.Multiple sensitivity analyses assessed result robustness.RESULTS Fifteen gut microbial taxa showed significant causal associations with CCA risk.Higher genetically predicted abundance of genus Eubacteriumnodatum group,genus Ruminococcustorques group,genus Coprococcus,genus Dorea,and phylum Actinobacteria were associated with reduced risk of gallbladder cancer and extrahepatic CCA.Increased intrahepatic CCA risk was associated with higher abundance of family Veillonellaceae,genus Alistipes,order Enterobacteriales,and phylum Firmicutes.Protective effects against CCA were suggested for genus Collinsella,genus Eisenbergiella,genus Anaerostipes,genus Paraprevotella,genus Parasutterella,and phylum Verrucomicrobia.Sensitivity analyses indicated these findings were reliable without pleiotropy.CONCLUSION This pioneering study provides novel evidence that specific gut microbiota may play causal roles in CCA risk.Further experimental validation of these candidate microbes is warranted to consolidate causality and mechanisms.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localize...Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.展开更多
A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressu...A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.展开更多
BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling ...BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
基金national Natural science Fundation of China. No.79570040
文摘For the first time, this paper introduces Petri net theory to the domain of enterprise strategy management, puts forword a new way by using Petri net to analyse and describe the formulating process of enterprise merger and acquisition strategies, provides a clear and simple tool for supporting the management bureau of enterprise to make its merger and acquisition strategies.
文摘In this paper, a whole field solution to finite internally cracked plates is derived by complex variable method, where the equations of equilibrium and compatibility, the single value condition of displacements and the traction-free condition on crack surfaces are satisfied exactly. The stress intensity factors of finite plates with central crack or eccentric crack or cracks emanating from a hole are calculated by using minimum potential energy principle to treat the boundary conditions excluding those on crack surfaces. As an application of the method to engineering problems, the computation about a finite rivet joint stiffened plate with cracks emanating from a hole is also performed. The numerical results show that the method presented in this paper gives rapid convergence and is much time-saving in computations.
基金funding the project"Biodiversity,productivity,and C-sequestration of oak stands"(No.5102150)the Bavarian State Ministry for Nutrition,Agriculture and Forestry for permanent support of the project W 07"Long-term experimental plots for forest growth and yield research"(7831-23953-2014)
文摘Background: Most current approaches in forest science and practice require information about structure and growth of individual trees rather than- or in addition to- sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites.Methods: Here, we present an extension of the original design and evaluation by Nelder.(i) We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density.(ii) We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation.(iii)We prove the usefulness of the methods in improving ecological theory concerning density related productivity,trade-offs between facilitation and competition, and allometric relations between size variables.Results: First evaluations based on remeasured Nelder wheels in oak(Quercus robur L.) show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations.Conclusions: The proposed design, methods, and results are discussed regarding their impact on forest practice,model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level information.
文摘The aim of this paper is to present the design and specifications of an integrated Delay Analysis Framework(DAF),which could be used to quantify the delay caused by the Risk Factors(RFs)in Oil and Gas Pipelines(OGPs)projects in a simple and systematic way.The main inputs of the DAF are(i)the potential list of RFs in the projects and their impact levels on the projects and the estimated maximum and minimum duration of each task.Monte Carlo Simulation integrated within@Risk simulator was the key process algorithm that used to quantify the impact of delay caused by the associated RFs.The key output of the DAF is the amount of potential delay caused by RFs in the OGP project.The functionalities of the developed DAF were evaluated using a case study of newly developed OGP project,in the south of Iraq.It is found that the case study project might have delayed by 45 days if neglected the consideration of the RFs associated with the project at the construction stage.The paper concludes that identifying the associated RFs and analysing the potential delay in advance will help in reducing the construction delay and improving the effectiveness of the project delivery by taking suitable risk mitigation measures.
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金supported by the Dean Faculty of Science,University of Karachi research grant.
文摘This study is thefirst attempt to assess the nature of the soil,especially on the western side of the Porali Plain in Balochistan;a new emerging agriculture hub,using weathering and pollution indices supplemented by multi-variate analysis based on geochemical data.The outcomes of this study are expected to help farmers in soil manage-ment and selecting suitable crops for the region.Twenty-five soil samples were collected,mainly from the arable land of the Porali Plain.After drying and coning-quarter-ing,soil samples were analyzed for major and trace ele-ments using the XRF technique;sieving and hydrometric methods were employed for granulometric analysis.Esti-mated data were analyzed using Excel,SPSS,and Surfer software to calculate various indices,correlation matrix,and spatial distribution.The granulometric analysis showed that 76%of the samples belonged to loam types of soil,12%to sand type,and 8%to silt type.Weathering indices:CIA,CIW,PIA,PWI,WIP,CIX,and ICV were calculated to infer the level of alteration.These indices reflect mod-erate to intense weathering;supported by K_(2)O/AI_(2)O_(3),Rb/K_(2)O,Rb/Ti,and Rb/Sr ratios.Assessment of the geo-ac-cumulation and Nemerow Pollution indices pinpoint rela-tively high concentrations of Pb,Ni,and Cr concentration in the soils.The correlation matrix and Principal Compo-nent Analysis show that the soil in this study area is mainly derived from the weathering of igneous rocks of Bela Ophiolite(Cretaceous age)and Jurassic sedimentary rocks of Mor Range having SEDEX/MVT type mineralization.Weathering may result in the undesirable accumulation of certain trace elements which adversely affects crops.
基金the National Natural Science Foundation of China(42271054)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0301)。
文摘Ongoing encroachment is driving recent alpine shrubline dynamics globally,but the role of shrub-shrub interactions in shaping shrublines and their relationships with stem density changes remain poorly understood.Here,the size and age of shrubs from 26 Salix shrubline populations along a 900-km latitudinal gradient(30°-38°N)were measured and mapped across the eastern Tibetan Plateau.Point pattern analyses were used to quantify the spatial distribution patterns of juveniles and adults,and to assess spatial associations between them.Mean intensity of univariate and bivariate spatial patterns was related to biotic and abiotic variables.Bivariate mark correlation functions with a quantitative mark(shrub height,basal stem diameter,crown width)were also employed to investigate the spatial relationships between shrub traits of juveniles and adults.Structural equation models were used to explore the relationships among conspecific interactions,patterns,shrub traits and recruitment dynamics under climate change.Most shrublines showed clustered patterns,suggesting the existence of conspecific facilitation.Clustered patterns of juveniles and conspecific interactions(potentially facilitation)tended to intensify with increasing soil moisture stress.Summer warming before 2010 triggered positive effects on population interactions and spatial patterns via increased shrub recruitment.However,summer warming after2010 triggered negative effects on interactions through reduced shrub recruitment.Therefore,shrub recruitment shifts under rapid climate change could impact spatial patterns,alter conspecific interactions and modify the direction and degree of shrublines responses to climate.These changes would have profound implications for the stability of alpine woody ecosystems.
基金The National Natural Science Foundation of China under contract Nos 42276047, 92158201 and U1901213the Entrepreneurship Project of Shantou under contract No.2021112176541391the Scientific Research Start-Up Foundation of Shantou University under contract No.NTF20006。
文摘Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry.
文摘Objective To screen the target genes that are associated with survival of breast cancer(BRCA) and explore their prognostic values and immune correlations with BRCA using multiple databases..Methods The microarray expression datasets of BRCA were downloaded from the Gene Expresssion Omnibus database(GEO) and analyzed to obtain differentially expressed genes(DEGs). Hub genes were obtained by constructing and visualizing the protein-protein interaction network of DEGs. The key gene was determined using R language, STRING, and Cytoscape, and the differential expression of the key gene was verified using external datasets The Cancer Genome Atlas(TCGA) and quantitative real-time PCR(q RT-PCR) for BRCA tissues of 37 patients. The prognostic value and immunological correlation of UBE2C in BRCA were explored using R language, TIMER, and Gene Set Enrichment Analysis(GSEA).Results Of 10 hub genes seleceed from 302 DEGS, UBE2C was identified as the gene associated with BRCA survival. The expression of UBE2C was differentially upregulated in BRCA, as verified by TCGA and q RT-PCR. Prognostic analysis revealed that UBE2C served as an independent prognostic factor. High expression of UBE2C was associated with decreased immune infiltration levels of B cells, CD4+ T cells, CD8+ T cells, macrophages, and myeloid dendritic cells in BRCA tissue. The expression of UBE2C in BRCA showed a significant correlation with immune checkpoints genes PDCD1, CD274, and CTLA4 expressions. There was a positive correlation between the expression of UBE2C and the tumor mutational burden and microsatellite instability. GSEA demonstrated that UBE2C expression significantly enriched 786 immune-related gene sets.Conclusions UBE2C expression in BRCA tissues is closely related to the BRCA immune microenvironment and showes predictive values on the survivals and prognosis of BRCA patients and the effecacy of immunotherapy. UBE2C may be an potential immune-related prognostic biomarker for BRCA.
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20602,U2040221).
文摘A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK05010203)the Survey of Wildlife Resources in Key Areas of Xizang(Phase II,ZL202303601)Program of conservation measures study on amphibians and reptiles of Grand Canyon National Nature Reserve,and China Biodiversity Observation Networks(Sino BON).
文摘A new species of the genus Liurana is described from Medog,Xizang,China,based on morphological and molecular data.Molecular phylogenetic analysis based on the mitochondrial gene COI indicated that this new species represented an independent evolutionary lineage.In addition,the uncorrected genetic distance between the new species and its closest congener species,L.alpina,was 9.6%-9.8%for COI.The new species,Liurana namchabarwa sp.nov.Yu,Lin,Wang,Jiang and Xie,could be distinguished from its congeners by following characters:(1)relatively large body size in this genus,SVL=21.2-23.1 mm in adult males(n=3);(2)relatively narrow head(HL/HW=100.5%-104.8%(n=3));(3)digital disc not expanded;(4)relatively long hindlimbs,with tibiotarsal articulation reaching tip of snout when adpressed.
文摘BACKGROUND Cholangiocarcinoma(CCA)is a highly malignant biliary tract cancer with poor prognosis.Previous studies have implicated the gut microbiota in CCA,but evidence for causal mechanisms is lacking.AIM To investigate the causal relationship between gut microbiota and CCA risk.METHODS We performed a two-sample mendelian randomization study to evaluate potential causal associations between gut microbiota and CCA risk using genome-wide association study summary statistics for 196 gut microbial taxa and CCA.Genetic variants were used as instrumental variables.Multiple sensitivity analyses assessed result robustness.RESULTS Fifteen gut microbial taxa showed significant causal associations with CCA risk.Higher genetically predicted abundance of genus Eubacteriumnodatum group,genus Ruminococcustorques group,genus Coprococcus,genus Dorea,and phylum Actinobacteria were associated with reduced risk of gallbladder cancer and extrahepatic CCA.Increased intrahepatic CCA risk was associated with higher abundance of family Veillonellaceae,genus Alistipes,order Enterobacteriales,and phylum Firmicutes.Protective effects against CCA were suggested for genus Collinsella,genus Eisenbergiella,genus Anaerostipes,genus Paraprevotella,genus Parasutterella,and phylum Verrucomicrobia.Sensitivity analyses indicated these findings were reliable without pleiotropy.CONCLUSION This pioneering study provides novel evidence that specific gut microbiota may play causal roles in CCA risk.Further experimental validation of these candidate microbes is warranted to consolidate causality and mechanisms.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.
基金supported by the Foundation of Liaoning Provincial Key Laboratory of Energy Storage and Utilization(Grant Nos.CNWK202304 and CNNK202315)the Introduction of TalentResearch Start-Up Funding Projects ofYingkou Institute of Technology(Grant No.YJRC202107).
文摘A novel dual-pressure organic Rankine cycle system(DPORC)with a dual-stage ejector(DE-DPORC)is proposed.The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the highpressure expander to pressurize a large quantity of exhaust gas to performwork for the low-pressure expander.This innovative approach addresses condensing pressure limitations,reduces power consumption during pressurization,minimizes heat loss,and enhances the utilization efficiency of waste heat steam.A thermodynamic model is developed with net output work,thermal efficiency,and exergy efficiency(W_(net,ηt,ηex))as evaluation criteria,an economicmodel is established with levelized energy cost(LEC)as evaluation index,anenvironmentalmodel is created with annual equivalent carbon dioxide emission reduction(AER)as evaluation parameter.A comprehensive analysis is conducted on the impact of heat source temperature(T_(S,in)),evaporation temperature(T_(2)),entrainment ratio(E_(r1),E_(r2)),and working fluid pressure(P_(5),P_(6))on system performance.It compares the comprehensive performance of the DE-DPORC system with that of the DPORC system at TS,in of 433.15 K and T2 of 378.15 K.Furthermore,multi-objective optimization using the dragonfly algorithm is performed to determine optimal working conditions for the DE-DPORC system through the TOPSIS method.The findings indicate that the DEDPORC system exhibits a 5.34%increase inWnet andηex,a 58.06%increase inηt,a 5.61%increase in AER,and a reduction of 47.67%and 13.51%in the heat dissipation of the condenser andLEC,compared to theDPORCsystem,highlighting the advantages of this enhanced system.The optimal operating conditions are TS,in=426.74 K,T_(2)=389.37 K,E_(r1)=1.33,E_(r2)=3.17,P_(5)=0.39 MPa,P_(6)=1.32 MPa,which offer valuable technical support for engineering applications;however,they are approaching the peak thermodynamic and environmental performance while falling short of the highest economic performance.
基金Supported by the Science and Technology Programme of Guangzhou City,No.202201020341.
文摘BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.