Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the ne...Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization.Material flow analysis is a powerful tool for tracking material flows and stocks,aiding resource management and environmental decision-making.However,the full extent of its methodological dimensions,particularly within the context of the wood supply chain,remains relatively unexplored.In this study,we delve into the existing literature on wood flow analysis,discussing its primary objectives,materials involved,temporal and spatial scales,data sources,units,and conversion factors.Additionally,data uncertainty,data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper.Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials,where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products.The immediate impact of short-term wood cascading might not be as robust as the substitution effect,with energy substitution showcasing better results than material substitution.However,it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective.Strategies for improving wood efficiency involve maximizing material use,advancing construction technologies,extending product lifespans,promoting cascade use,and optimizing energy recovery processes.The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.展开更多
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by...This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.展开更多
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i...The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.展开更多
Substance flow analysis was applied to analyzing the lead emissions in 2010. It turns out that in 2010, for every 1 kg of lead consumed, 0.48 kg lead is lost into the environment. The emissions in 2010 were estimated ...Substance flow analysis was applied to analyzing the lead emissions in 2010. It turns out that in 2010, for every 1 kg of lead consumed, 0.48 kg lead is lost into the environment. The emissions in 2010 were estimated to be 1.89×10^6 t, which were mainly from use (39.20%) and waste management&recycling (33.13%). The accumulative lead in 1960-2010 from the anthropogenic flow was estimated and the results show that the total accumulative lead in this period amounted to 19.54×10^6 t, which was equivalent to 14.26 kg and 2.04 g/m^2 at the present population and territory.展开更多
The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteri...The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters.展开更多
The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,ind...The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,indicators including direct recovery,waste recycle ratio,and resource efficiency were used to evaluate the metabolism efficiency of the system.The results showed that,the resource efficiency of copper was 97.58%,the direct recovery of copper in smelting,converting,and refining processes was 91.96%,97.13%and 99.47%,respectively.Meanwhile,for producing 1 t of copper,10 kg of arsenic was carried into the system,with the generation of 1.07 kg of arsenic in flotation tailing,8.50 kg of arsenic in arsenic waste residue,and 0.05 kg of arsenic in waste water.The distribution and transformation behaviors of arsenic in the smelting,converting,and refining processes were also analyzed,and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.展开更多
With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing...With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing through the EMCVT, one is mechanical power and the other is electric power. In the mean time, there are three power ports in the EMCVT, one is the outer rotor named mechanical power port and the other two are the inner rotor and the stator named electric power ports. The mechanical power port is connected to the driving wheels through the final gear and the electric ports are connected to the batteries through the transducers. The two kinds of power are coupled on the outer rotor of the EMCVT. The EMCVT can be equipped on the conventional vehicle being regarded as the CVT and it also can be equipped on the hybrid electric vehicle(HEV) as the multi-energy sources assembly. The power flows of these two kinds of applications are analysed. The back electromotive force(EMF) equations are illatively studied and so the dynamic mathematic model is theorized. In order to certify the feasibility of the above theories, three simulations are carried out in allusion to the above two kinds of mentioned applications of the EMCVT and a five speed automatic transmission(AT) vehicle. The simulation results illustrate that the efficiency of the EMCVT vehicles is higher than that of the AT vehicle owed to the optimized operation area of the engine. Hence the fuel consumption of the EMCVT vehicles is knock-down.展开更多
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ...Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.展开更多
Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity fiel...Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.展开更多
The chemiluminescence reactions between lucigenin and reductants such as Mo(LII),V( II), U(III), W(III), Cr(II), Ti(III) and Fe( II), which were produced on-line by passing Mo(VI),V(V),U(VI), W(VI), Cr(VI,III),Ti(IV) ...The chemiluminescence reactions between lucigenin and reductants such as Mo(LII),V( II), U(III), W(III), Cr(II), Ti(III) and Fe( II), which were produced on-line by passing Mo(VI),V(V),U(VI), W(VI), Cr(VI,III),Ti(IV) and Fe(III) through a micro Jones column, are studied in detail. Results show that the reactions can be used directly for the determination of these substances. The mechanism of the reactions is also investigated.展开更多
Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus...Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus determinationmethods presently. The compounds used for the phosphorus recovery test were categorized into three groups accordingto their chemical structure. It was found that low power UV irradiation can decompose POC or PC bonds efficientlybut may be inefficient for POP bonds. Heating-bath in acid condition is useful for decomposing POP bonds. Usingthe continuous flow analysis system (Auto-analyzer II), UV digestion and heating-bath, series experiments were carriedout based on the above analysis. Eleven model compounds were employed for the phosphorus recovery test and thefactors influencing the decomposition efficiency of dissolved compounds containing phosphorus were clarified. Finally,the optimal design for determination of dissolved total phosphorus in seawater based on the routine continuous flowanalysis system was presented. For the organic mono-phosphate, the recovery is more than 90% and a recovery of33%~51% was obtained for inorganic or organic polyphosphates. Up to now, this is the highest decompositionefficiency for dissolved phosphorus based on the continuous flow analysis system.展开更多
Lactate dehydrogenase (LDH) release test, 3 H-thymidine (3 H-TdR) and 3 H-leucine (3 H-Leu) incoopration tests and flow cytometric analysis (FCM) of cell cycle were empoyed to elucidate cellular and molecular mechanis...Lactate dehydrogenase (LDH) release test, 3 H-thymidine (3 H-TdR) and 3 H-leucine (3 H-Leu) incoopration tests and flow cytometric analysis (FCM) of cell cycle were empoyed to elucidate cellular and molecular mechanism of nitrofen-induced toxicity in cultured keratinocytes.The results showed that cell morphologic damages were observed after exposure to 1.0 mmol/L and 10.0 mmol/L nitrofen. LDH release increased in a dose- and time-dependent manner. Depressions in 3H -TdR and 3 H-Leu incorpration were found even at 0.01 mmol/L, and increased with the exposure dose. Cell cycle was analyzed from the DNA- histogram with propidium iodde stain. The results showed that there was no pronounced alteration in cell cycle after cells exposed to 0.01 and 0.1 mmol/L nitrofen. At dose of 1.0 mmol/L, S phase cells increased 2 times of that of control. With the increase of dose, G2/M phase cells became to increase about 5 times of that of the control. At 1 .0 mmol/L, time course of cell cycle after exposure was observed. At the beginning of exposure, cells in S phase and G2/M phase were about 8 .7 % and 11 %. Following 24 h incubation with nitrofen, cells in S phase increased to 18.0% with almost no change in G2/M. 72 h after exposure, G2/M phase cells increased to 63 .3%. The forve results demonstrated that S phase and G2/M phase blockage in cultured keratinocytes after exposed to nitrofen seems of importance in the mechanism of nitrofen-induced toxicity.展开更多
That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concept...That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concepts of the chain and the chain group of product life cycles, which are essential for understanding the specific features of substance flow, were advanced. Taking the specific feature of substance flow into consideration, on the analogy of the two approaches in fluid mechanics, two approaches of substance flow analysis, i.e. L method and E model, were formulated. Illustrative models of steady and unsteady substance flow were sketched by both methods, and comparison between them was made in general.展开更多
Base on the framework of material flow analsis (MFA) proposed by Eurostat, this paper collected related data and conducted a regional MFA for the Chengyang Districgt in Qingdao. The indicators such as Direct Materia...Base on the framework of material flow analsis (MFA) proposed by Eurostat, this paper collected related data and conducted a regional MFA for the Chengyang Districgt in Qingdao. The indicators such as Direct Material Input(DMI), Direct Material Consumption (DMC) and Exports are calculated or estimated for the period of year 1995 through 2004. Several derivable iudicators defining direct material productivity and material intenstiy are also evaluated and some valuable conclusions were drawn. DMI in absolute number increased from about 1645.9 kilotons in 1995to about 8052.5 kilotons in 2004. Imports contribute to about 47 to 69% of DMI, and the biggest component of imports is fossil fuel that approximatley accounts far 50% of imnports. DMI per capita of Chengyang District increased rapidly and reached 17. 4 tons in 2004. Compared with other five economies studied by WRI, material consumption intensity of Chengyang District is significantly lower than developed countries, which indicates that Chengyang District is still in a development stage The direct material productivity (actual GDP per DMI) increased 59.1% from 1995 to 2004 and has been higher than either of stadies in China, which indicates efficiency of resources utilization has improved obviously in Chengyang District. But there was significant increase in material input in the last decade, which shows that rapid increase of economy is highly dependent on requirement and consumption of natural resources. Therefore, in order to promote the sustainahility, it is essential to develop circular economy and improve utilization efficiency of resources.展开更多
Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul...Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.展开更多
In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large...In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large size, complex structure and poor low pressure atomization effect in comparison with requirement of snake-like fire rescue robots. On the basis of comprehensive typical spray noz- zles, a direct spiral double helix converging nozzle (DSDHCN) is proposed, which has the advanta- ges of small volume, light weight, simple structure, and convenient installation. To make the spray nozzle have good performance, and meet the requirements of more efficient fire extinguishing, a nu- merical study is carried out to analyze the internal and external full flow field of nozzle. A gas-liquid two-phase flow is applied to simulate the external full flow field of nozzle with VOF model in fluent software. The simulation results show the real situation of water flow out of the atomization nozzle and the water jet trajectory. Some simulations about middle or low water pressure direct spiral double he- lix converging optimized nozzle have been done in 30bar pressure. The simulation results show that the optimized nozzle structure not only makes the spray droplets have a good cone angle, but also have a sufficient axial velocity,which proves the structure rationality of the proposed optimized nozzle.展开更多
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the qu...The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.展开更多
The method "Material Flow Analysis (MFA)" is one of the effective tools to study law and quantification of material flow between economic system and ecological system. On the national level, economy-wide material ...The method "Material Flow Analysis (MFA)" is one of the effective tools to study law and quantification of material flow between economic system and ecological system. On the national level, economy-wide material flow analysis has been published for a number of countries. However, published studies on the regional or local level are still very limited and a standardized method does not exist yet. On the basis of framework of Material Flow Analysis proposed by Eurostat, the paper collected related data and analyzed material input and output for the Chengyang district in Qingdao. The results showed that DMI (Direct Material Input) and TMR (Total Material Requirement) in absolute number increased about 3.6 and 3.9 times, respectively from 1995 to 2004. Fossil fuel and mineral contributed to about 50.3%-76.3% of DMI. Imports of material increased about 5.0 times and became the most important Contributor to DMI, which showed that local economic growth was highly dependent on resources from other regions and countries. DPO (Domestic Processed Output) and TDO (Total Domestic Output) represent slow increasing trend, and DPO contributed to 22.2%-58.1% of TDO, suggesting local hidden flows were of obvious effect on TDO. The biggest component of DPO is CO2, approximately accounting for 90% of DPO. The material productivity increased 57.7% in last decade, reflecting improvement of efficiency of resources utilization in some extent. However, compared to developed countries and regions, material productivity of Chengyang district was relatively low. Therefore, in order to promote the sustainability, it is essential to develop circular economy and enhance materials productivity.展开更多
In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homot...In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.展开更多
A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental para...A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental parameters, the working range for histidine was in 1.0 x 10-6 to 1.0 x 10 -3 mol/L with a detection limit (S/N = 3) of 0.56 mmol/L. The relative standard deviation was 1.6% for 11 measurements of 5 x 10 5 mol/L histidine solution. The proposed method has been successfully applied to the determination of histidine in real pharmaceutical preparation.展开更多
基金The China Scholarship Council finances this research (Grant number CSC202010220001)。
文摘Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization.Material flow analysis is a powerful tool for tracking material flows and stocks,aiding resource management and environmental decision-making.However,the full extent of its methodological dimensions,particularly within the context of the wood supply chain,remains relatively unexplored.In this study,we delve into the existing literature on wood flow analysis,discussing its primary objectives,materials involved,temporal and spatial scales,data sources,units,and conversion factors.Additionally,data uncertainty,data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper.Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials,where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products.The immediate impact of short-term wood cascading might not be as robust as the substitution effect,with energy substitution showcasing better results than material substitution.However,it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective.Strategies for improving wood efficiency involve maximizing material use,advancing construction technologies,extending product lifespans,promoting cascade use,and optimizing energy recovery processes.The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.
基金The research was funded by Science and Technology Project of Hebei Education Department(Project Number:QN2022198).Y.C.received the grant.
文摘This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.
基金The National Natural Science Foundation of China (No.50976022)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period (No.2008BAJ12B02)
文摘The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.
基金Project (41171361) supported by the National Natural Science Foundation of China
文摘Substance flow analysis was applied to analyzing the lead emissions in 2010. It turns out that in 2010, for every 1 kg of lead consumed, 0.48 kg lead is lost into the environment. The emissions in 2010 were estimated to be 1.89×10^6 t, which were mainly from use (39.20%) and waste management&recycling (33.13%). The accumulative lead in 1960-2010 from the anthropogenic flow was estimated and the results show that the total accumulative lead in this period amounted to 19.54×10^6 t, which was equivalent to 14.26 kg and 2.04 g/m^2 at the present population and territory.
基金supported by National Natural Science Foundation of China (Grant Nos. 50675172,50975227)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.FANEDD200740)National Hi-tech Research and Development of China (863 Program,Grant No. 2011AA100507-04)
文摘The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters.
基金financial supports from the National Key R&D Program of China(No.2019YFC1907400)the National Natural Science Foundation of China(Nos.51904351,51620105013)。
文摘The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,indicators including direct recovery,waste recycle ratio,and resource efficiency were used to evaluate the metabolism efficiency of the system.The results showed that,the resource efficiency of copper was 97.58%,the direct recovery of copper in smelting,converting,and refining processes was 91.96%,97.13%and 99.47%,respectively.Meanwhile,for producing 1 t of copper,10 kg of arsenic was carried into the system,with the generation of 1.07 kg of arsenic in flotation tailing,8.50 kg of arsenic in arsenic waste residue,and 0.05 kg of arsenic in waste water.The distribution and transformation behaviors of arsenic in the smelting,converting,and refining processes were also analyzed,and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.
基金supported by National Natural Science Foundation of China(No.50605020)Guangdong Provincial Science and Technology Project of China(No.2006A10501001).
文摘With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing through the EMCVT, one is mechanical power and the other is electric power. In the mean time, there are three power ports in the EMCVT, one is the outer rotor named mechanical power port and the other two are the inner rotor and the stator named electric power ports. The mechanical power port is connected to the driving wheels through the final gear and the electric ports are connected to the batteries through the transducers. The two kinds of power are coupled on the outer rotor of the EMCVT. The EMCVT can be equipped on the conventional vehicle being regarded as the CVT and it also can be equipped on the hybrid electric vehicle(HEV) as the multi-energy sources assembly. The power flows of these two kinds of applications are analysed. The back electromotive force(EMF) equations are illatively studied and so the dynamic mathematic model is theorized. In order to certify the feasibility of the above theories, three simulations are carried out in allusion to the above two kinds of mentioned applications of the EMCVT and a five speed automatic transmission(AT) vehicle. The simulation results illustrate that the efficiency of the EMCVT vehicles is higher than that of the AT vehicle owed to the optimized operation area of the engine. Hence the fuel consumption of the EMCVT vehicles is knock-down.
基金This project is supported by National Natural Science Foundation of China (No. 50175042).
文摘Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.
基金supported by the Fundamental Research Funds for the Dalian University of Technology(Grant No.DUT10LK43)the National Key Basic Research Program of China(Grant No.2013CB036101)
文摘Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.
文摘The chemiluminescence reactions between lucigenin and reductants such as Mo(LII),V( II), U(III), W(III), Cr(II), Ti(III) and Fe( II), which were produced on-line by passing Mo(VI),V(V),U(VI), W(VI), Cr(VI,III),Ti(IV) and Fe(III) through a micro Jones column, are studied in detail. Results show that the reactions can be used directly for the determination of these substances. The mechanism of the reactions is also investigated.
基金The research was supported by the National Basic Research Program(“973”Program)of China under contract No.2002CB412405the Key Science and Technology Plan of the Ministry of Education of China under contract No.[2000]156-00079the Joint Sino-German Project under contract No.03F0189A.
文摘Several methods for analysis of dissolved total phosphorus in seawater were reviewed. Discussions were focused on UVirradiation and persulphate oxidation methods which are the most popular dissolved organic phosphorus determinationmethods presently. The compounds used for the phosphorus recovery test were categorized into three groups accordingto their chemical structure. It was found that low power UV irradiation can decompose POC or PC bonds efficientlybut may be inefficient for POP bonds. Heating-bath in acid condition is useful for decomposing POP bonds. Usingthe continuous flow analysis system (Auto-analyzer II), UV digestion and heating-bath, series experiments were carriedout based on the above analysis. Eleven model compounds were employed for the phosphorus recovery test and thefactors influencing the decomposition efficiency of dissolved compounds containing phosphorus were clarified. Finally,the optimal design for determination of dissolved total phosphorus in seawater based on the routine continuous flowanalysis system was presented. For the organic mono-phosphate, the recovery is more than 90% and a recovery of33%~51% was obtained for inorganic or organic polyphosphates. Up to now, this is the highest decompositionefficiency for dissolved phosphorus based on the continuous flow analysis system.
文摘Lactate dehydrogenase (LDH) release test, 3 H-thymidine (3 H-TdR) and 3 H-leucine (3 H-Leu) incoopration tests and flow cytometric analysis (FCM) of cell cycle were empoyed to elucidate cellular and molecular mechanism of nitrofen-induced toxicity in cultured keratinocytes.The results showed that cell morphologic damages were observed after exposure to 1.0 mmol/L and 10.0 mmol/L nitrofen. LDH release increased in a dose- and time-dependent manner. Depressions in 3H -TdR and 3 H-Leu incorpration were found even at 0.01 mmol/L, and increased with the exposure dose. Cell cycle was analyzed from the DNA- histogram with propidium iodde stain. The results showed that there was no pronounced alteration in cell cycle after cells exposed to 0.01 and 0.1 mmol/L nitrofen. At dose of 1.0 mmol/L, S phase cells increased 2 times of that of control. With the increase of dose, G2/M phase cells became to increase about 5 times of that of the control. At 1 .0 mmol/L, time course of cell cycle after exposure was observed. At the beginning of exposure, cells in S phase and G2/M phase were about 8 .7 % and 11 %. Following 24 h incubation with nitrofen, cells in S phase increased to 18.0% with almost no change in G2/M. 72 h after exposure, G2/M phase cells increased to 63 .3%. The forve results demonstrated that S phase and G2/M phase blockage in cultured keratinocytes after exposed to nitrofen seems of importance in the mechanism of nitrofen-induced toxicity.
文摘That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concepts of the chain and the chain group of product life cycles, which are essential for understanding the specific features of substance flow, were advanced. Taking the specific feature of substance flow into consideration, on the analogy of the two approaches in fluid mechanics, two approaches of substance flow analysis, i.e. L method and E model, were formulated. Illustrative models of steady and unsteady substance flow were sketched by both methods, and comparison between them was made in general.
文摘Base on the framework of material flow analsis (MFA) proposed by Eurostat, this paper collected related data and conducted a regional MFA for the Chengyang Districgt in Qingdao. The indicators such as Direct Material Input(DMI), Direct Material Consumption (DMC) and Exports are calculated or estimated for the period of year 1995 through 2004. Several derivable iudicators defining direct material productivity and material intenstiy are also evaluated and some valuable conclusions were drawn. DMI in absolute number increased from about 1645.9 kilotons in 1995to about 8052.5 kilotons in 2004. Imports contribute to about 47 to 69% of DMI, and the biggest component of imports is fossil fuel that approximatley accounts far 50% of imnports. DMI per capita of Chengyang District increased rapidly and reached 17. 4 tons in 2004. Compared with other five economies studied by WRI, material consumption intensity of Chengyang District is significantly lower than developed countries, which indicates that Chengyang District is still in a development stage The direct material productivity (actual GDP per DMI) increased 59.1% from 1995 to 2004 and has been higher than either of stadies in China, which indicates efficiency of resources utilization has improved obviously in Chengyang District. But there was significant increase in material input in the last decade, which shows that rapid increase of economy is highly dependent on requirement and consumption of natural resources. Therefore, in order to promote the sustainahility, it is essential to develop circular economy and improve utilization efficiency of resources.
文摘Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.
基金Supported by the National Natural Science Foundation of China(No.61105086)Self-Planned Task(SKLRS-2010-MS-12)of State Key Laboratory of Robotics and System(HIT)Hubei Province Natural Science Foundation(No.2010CDB03405)
文摘In order to solve the problem of using new nozzle is proposed in fire rescue robot. middle or low water pressure to form fine water mist, a Existing water mist nozzles are basically used for high pressure and in large size, complex structure and poor low pressure atomization effect in comparison with requirement of snake-like fire rescue robots. On the basis of comprehensive typical spray noz- zles, a direct spiral double helix converging nozzle (DSDHCN) is proposed, which has the advanta- ges of small volume, light weight, simple structure, and convenient installation. To make the spray nozzle have good performance, and meet the requirements of more efficient fire extinguishing, a nu- merical study is carried out to analyze the internal and external full flow field of nozzle. A gas-liquid two-phase flow is applied to simulate the external full flow field of nozzle with VOF model in fluent software. The simulation results show the real situation of water flow out of the atomization nozzle and the water jet trajectory. Some simulations about middle or low water pressure direct spiral double he- lix converging optimized nozzle have been done in 30bar pressure. The simulation results show that the optimized nozzle structure not only makes the spray droplets have a good cone angle, but also have a sufficient axial velocity,which proves the structure rationality of the proposed optimized nozzle.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB409903)the National Natural Science Foundation of China (Grant No. 50739002)
文摘The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.
基金Qingdao Agricultural University Research Fund (630707)
文摘The method "Material Flow Analysis (MFA)" is one of the effective tools to study law and quantification of material flow between economic system and ecological system. On the national level, economy-wide material flow analysis has been published for a number of countries. However, published studies on the regional or local level are still very limited and a standardized method does not exist yet. On the basis of framework of Material Flow Analysis proposed by Eurostat, the paper collected related data and analyzed material input and output for the Chengyang district in Qingdao. The results showed that DMI (Direct Material Input) and TMR (Total Material Requirement) in absolute number increased about 3.6 and 3.9 times, respectively from 1995 to 2004. Fossil fuel and mineral contributed to about 50.3%-76.3% of DMI. Imports of material increased about 5.0 times and became the most important Contributor to DMI, which showed that local economic growth was highly dependent on resources from other regions and countries. DPO (Domestic Processed Output) and TDO (Total Domestic Output) represent slow increasing trend, and DPO contributed to 22.2%-58.1% of TDO, suggesting local hidden flows were of obvious effect on TDO. The biggest component of DPO is CO2, approximately accounting for 90% of DPO. The material productivity increased 57.7% in last decade, reflecting improvement of efficiency of resources utilization in some extent. However, compared to developed countries and regions, material productivity of Chengyang district was relatively low. Therefore, in order to promote the sustainability, it is essential to develop circular economy and enhance materials productivity.
基金supported by the National Natural Science Foundations of China (50936003, 50905013)The Open Project of State Key Lab. for Adv. Matals and Materials (2009Z-02)Research Foundation of Engineering Research Institute of USTB
文摘In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.
文摘A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental parameters, the working range for histidine was in 1.0 x 10-6 to 1.0 x 10 -3 mol/L with a detection limit (S/N = 3) of 0.56 mmol/L. The relative standard deviation was 1.6% for 11 measurements of 5 x 10 5 mol/L histidine solution. The proposed method has been successfully applied to the determination of histidine in real pharmaceutical preparation.