In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of...In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).展开更多
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a...Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.展开更多
Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater res...Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention.展开更多
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca...Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.展开更多
According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and app...In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and applied to the structural design of a microwave heater. The structural sizes of the incentive cavities are determined based on the waveguide transmission line theory. Using IE3D software, electromagnetic simulations are respectively carried out in four different situations, including the distances between the magnetron probes (antennas) and a short-circuit board, different horn electric lengths and aperture sizes, different dielectric properties of the asphalt mixture, and the distances between the asphalt surface and the mouth cavity. The results show that, when the distance between the magnetron probe and the short-circuit board is 32.5 ram, it is the best installation site; reduction of aerial length is the main factor in improving the heating uniformity. When the aggregate is limestone, the best heating effect can be produced. Maximum radiation efficiency can be realized by adjusting the space between the heater radiation port and the asphalt pavement. The experimental results of asphalt mixture heating in four different situations have a substantial agreement with the simulation results, which confirms that the developed microwave heater can achieve better impedance matching, thus improving the quality and efficiency of heating regeneration.展开更多
This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model bui...This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model building program and the result post processing program. The RTSS may run in the client/server mode. The main features of the RTSS software are more modular, more flexible and easier to upgrade. RTSS is built on object oriented technology, so it has more flexibility. The RTSS model of a system is an open queueing network. For modeling various data acquisition systems, communication networks and flexible manufacturing systems at different abstraction levels, RTSS has proven to be an extremely useful tool for performance analysis.展开更多
This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect...This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.展开更多
Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-tu...Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.展开更多
Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC c...Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.展开更多
The wheel brake system safety is a complex problem which refers to its technical state, operating environment, human factors, etc., in aircraft landing taxiing process. Usually, professors consider system safety with ...The wheel brake system safety is a complex problem which refers to its technical state, operating environment, human factors, etc., in aircraft landing taxiing process. Usually, professors consider system safety with traditional probability techniques based on the linear chain of events. However, it could not comprehensively analyze system safety problems, especially in operating environment, interaction of subsystems, and human factors. Thus,we consider system safety as a control problem based on the system-theoretic accident model, the processes(STAMP) model and the system theoretic process analysis(STPA) technique to compensate the deficiency of traditional techniques. Meanwhile,system safety simulation is considered as system control simulation, and Monte Carlo methods are used which consider the range of uncertain parameters and operation deviation to quantitatively study system safety influence factors in control simulation. Firstly,we construct the STAMP model and STPA feedback control loop of the wheel brake system based on the system functional requirement. Then four unsafe control actions are identified, and causes of them are analyzed. Finally, we construct the Monte Carlo simulation model to analyze different scenarios under disturbance. The results provide a basis for choosing corresponding process model variables in constructing the context table and show that appropriate brake strategies could prevent hazards in aircraft landing taxiing.展开更多
Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal ...Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.展开更多
As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large ...As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis.By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute,China Meteorological Administration(CMASTI),typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen.We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons.In addition,the Yah Meng(YM)wind field model was introduced,and the sensitivity of the YM model to several parameters discussed.Using the YM wind field model,extreme wind speeds were extracted from the virtual typhoons.The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.展开更多
The spatial distribution of urban population can reflect significantly urban functions and development status. Shenyang, as a typical old industrial city in China, has experienced considerable changes in spatial distr...The spatial distribution of urban population can reflect significantly urban functions and development status. Shenyang, as a typical old industrial city in China, has experienced considerable changes in spatial distribution of population in the process of urban transformation, resulting in the change of urban spatial structure. Based on the sub-district data of Chinese national population censuses in 1982, 1990 and 2000, this study simulates the evolution pattern of spatial distribution of urban population in Shenyang City. Using statistical method and exploratory spatial data analysis (ESDA), we found that the population distribution, on the whole, has presented a balanced and decentralized trend since the 1980s, which characterizes with Chinese suburbanization. Furthermore, based on the investigation of the pattern of population distribution, it is concluded that the negative exponential model fitted the distribution best, and population concentration in the inner suburb kept increasing gradually, meanwhile, the spatial structure of population distribution has presented a polycentric feature since the 1980s. The parameters of the model show that population in the urban core concentrate significantly all the time. The increase of population in the inner suburb influences the population distribution pattern more and more importantly, but the concentration intensity of population cores in inner suburb is still low.展开更多
Based on the basic principle of vehicle crash analysis using the finite element method, a car finite element model was built by using Hypermesh software. To simulate the front collision test of the car, the LS-DYNA so...Based on the basic principle of vehicle crash analysis using the finite element method, a car finite element model was built by using Hypermesh software. To simulate the front collision test of the car, the LS-DYNA software is adopted to calculate the deformation of the car and the acceleration time history curves during the crashing process;the anti-impact capability of the car is evaluated from this simulation. The results demonstrate that the improvement of local structure can promote the crashworthiness of the car, but the further improvement needs a major change of the car structure.展开更多
A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensifica...A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (eg), defined as the difference between the energy production (PD) due to surface entropy flux and the energy dissipation (Ds) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ~:g is high, indicating sufficient energy supply for the storm to intensify. However, the Sg decreases rapidly as the storm quickly intensifies, because the Ds increases more rapidly than the PD near the RMW. By the time the storm reaches its peak intensity, the Ds is about 20% larger than the PD near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the PD and Ds can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local PD under the eyewall is not large enough to balance the Ds, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.展开更多
With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing...With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing through the EMCVT, one is mechanical power and the other is electric power. In the mean time, there are three power ports in the EMCVT, one is the outer rotor named mechanical power port and the other two are the inner rotor and the stator named electric power ports. The mechanical power port is connected to the driving wheels through the final gear and the electric ports are connected to the batteries through the transducers. The two kinds of power are coupled on the outer rotor of the EMCVT. The EMCVT can be equipped on the conventional vehicle being regarded as the CVT and it also can be equipped on the hybrid electric vehicle(HEV) as the multi-energy sources assembly. The power flows of these two kinds of applications are analysed. The back electromotive force(EMF) equations are illatively studied and so the dynamic mathematic model is theorized. In order to certify the feasibility of the above theories, three simulations are carried out in allusion to the above two kinds of mentioned applications of the EMCVT and a five speed automatic transmission(AT) vehicle. The simulation results illustrate that the efficiency of the EMCVT vehicles is higher than that of the AT vehicle owed to the optimized operation area of the engine. Hence the fuel consumption of the EMCVT vehicles is knock-down.展开更多
In order to analyze the gear-rack reliability under the most serious limit loads which was the new-type transmission mechanism of aircraft slats,the gear-rack static strength under the single tooth meshing was analyze...In order to analyze the gear-rack reliability under the most serious limit loads which was the new-type transmission mechanism of aircraft slats,the gear-rack static strength under the single tooth meshing was analyzed based on the simulation and experiment. Then,it randomized the load of gear-rack based on the precise finite element analysis( FEA) model,and analyzed the static strength reliability of the gear-rack. Finally,the gear-rack under the most dangerous situation has not been destroyed and it also has a high reliability.展开更多
Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, ...Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.展开更多
A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourl...A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.展开更多
文摘In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).
基金The work is supported by the Sub-Project of“Research on Key Technologies and Equipment of Reservoir Stimulation”of China National Petroleum Corporation Post–14th Five-Year Plan Forward-Looking Major Science and Technology Project“Research on New Technology of Monitoring and Diagnosis of Horizontal Well Hydraulic Fracture Network Distribution Pattern”(2021DJ4502).
文摘Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.
基金supported by the Institute of Hydrogeology and Environmental Geology,China Geological Survey"Coupling analysis of groundwater and land subsidence in typical cities of the North China Plain based on InSAR-GRACE technology"project under Grant No.KY202302the China Geological Survey"Research and promotion of digital water resources survey technology"project under Grant No.DD20230427the"Cloud platform geological survey node operation and maintenance and network security guarantee(Institute of Hydrogeology and Environmental Geology)"project under Grant No.DD20230719.
文摘Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention.
基金supported by the National Natural Science Foundation of China(U23A20336).
文摘Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
基金The Sci-Tech Achievements Transformation Program of Colleges and Universities in Jiangsu Province(No.JH09-13)the Research Fund of Nanjing Institute of Technology(No.YKJ201005)
文摘In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and applied to the structural design of a microwave heater. The structural sizes of the incentive cavities are determined based on the waveguide transmission line theory. Using IE3D software, electromagnetic simulations are respectively carried out in four different situations, including the distances between the magnetron probes (antennas) and a short-circuit board, different horn electric lengths and aperture sizes, different dielectric properties of the asphalt mixture, and the distances between the asphalt surface and the mouth cavity. The results show that, when the distance between the magnetron probe and the short-circuit board is 32.5 ram, it is the best installation site; reduction of aerial length is the main factor in improving the heating uniformity. When the aggregate is limestone, the best heating effect can be produced. Maximum radiation efficiency can be realized by adjusting the space between the heater radiation port and the asphalt pavement. The experimental results of asphalt mixture heating in four different situations have a substantial agreement with the simulation results, which confirms that the developed microwave heater can achieve better impedance matching, thus improving the quality and efficiency of heating regeneration.
文摘This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model building program and the result post processing program. The RTSS may run in the client/server mode. The main features of the RTSS software are more modular, more flexible and easier to upgrade. RTSS is built on object oriented technology, so it has more flexibility. The RTSS model of a system is an open queueing network. For modeling various data acquisition systems, communication networks and flexible manufacturing systems at different abstraction levels, RTSS has proven to be an extremely useful tool for performance analysis.
基金supported by the National Natural Science Foundation of China(Grant No.50905187)the Shandong Provincial Natural Science Foundation(Grant No.ZR2009FQ001)
文摘This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.
基金Supported by National Natural Science Foundation of China(Grant No.51139007)State Key Laboratory of Hydroscience and Engineering Open Foundation of China(Grant No.2014-KY-05)
文摘Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.
基金China National Science Foundation(40730948,41075037,41175063)Special Project of Chinese Academy of Meteorological Sciences(2007Y006)
文摘Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.
文摘The wheel brake system safety is a complex problem which refers to its technical state, operating environment, human factors, etc., in aircraft landing taxiing process. Usually, professors consider system safety with traditional probability techniques based on the linear chain of events. However, it could not comprehensively analyze system safety problems, especially in operating environment, interaction of subsystems, and human factors. Thus,we consider system safety as a control problem based on the system-theoretic accident model, the processes(STAMP) model and the system theoretic process analysis(STPA) technique to compensate the deficiency of traditional techniques. Meanwhile,system safety simulation is considered as system control simulation, and Monte Carlo methods are used which consider the range of uncertain parameters and operation deviation to quantitatively study system safety influence factors in control simulation. Firstly,we construct the STAMP model and STPA feedback control loop of the wheel brake system based on the system functional requirement. Then four unsafe control actions are identified, and causes of them are analyzed. Finally, we construct the Monte Carlo simulation model to analyze different scenarios under disturbance. The results provide a basis for choosing corresponding process model variables in constructing the context table and show that appropriate brake strategies could prevent hazards in aircraft landing taxiing.
基金The research results are part of a project carried out in 1999-2002 and financially supported by the US National Foundation(No.ASF EARO125968)in 2001-2003 and financially supported by the National Natural Science Foundation of China(Nos.40271089)the Major Sci-Tech Research Project of the Ministry of Education.
文摘Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402004,2016YFC1402000,2018YFC1407003)the National Natural Science Foundation of China(Nos.U1706216,U1606402,41421005)
文摘As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis.By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute,China Meteorological Administration(CMASTI),typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen.We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons.In addition,the Yah Meng(YM)wind field model was introduced,and the sensitivity of the YM model to several parameters discussed.Using the YM wind field model,extreme wind speeds were extracted from the virtual typhoons.The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-342, KZCX2-YW-321-04)National Natural Science Foundation of China (No. 40635030)
文摘The spatial distribution of urban population can reflect significantly urban functions and development status. Shenyang, as a typical old industrial city in China, has experienced considerable changes in spatial distribution of population in the process of urban transformation, resulting in the change of urban spatial structure. Based on the sub-district data of Chinese national population censuses in 1982, 1990 and 2000, this study simulates the evolution pattern of spatial distribution of urban population in Shenyang City. Using statistical method and exploratory spatial data analysis (ESDA), we found that the population distribution, on the whole, has presented a balanced and decentralized trend since the 1980s, which characterizes with Chinese suburbanization. Furthermore, based on the investigation of the pattern of population distribution, it is concluded that the negative exponential model fitted the distribution best, and population concentration in the inner suburb kept increasing gradually, meanwhile, the spatial structure of population distribution has presented a polycentric feature since the 1980s. The parameters of the model show that population in the urban core concentrate significantly all the time. The increase of population in the inner suburb influences the population distribution pattern more and more importantly, but the concentration intensity of population cores in inner suburb is still low.
文摘Based on the basic principle of vehicle crash analysis using the finite element method, a car finite element model was built by using Hypermesh software. To simulate the front collision test of the car, the LS-DYNA software is adopted to calculate the deformation of the car and the acceleration time history curves during the crashing process;the anti-impact capability of the car is evaluated from this simulation. The results demonstrate that the improvement of local structure can promote the crashworthiness of the car, but the further improvement needs a major change of the car structure.
基金supported by the National Basic Research and Development Project (973 program) of China (Grant No. 2015CB452805)the National Natural Science Foundation of China (Grant No. 41375068)partly supported by the National Science Foundation (Grant No. AGS-1326524)
文摘A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (eg), defined as the difference between the energy production (PD) due to surface entropy flux and the energy dissipation (Ds) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ~:g is high, indicating sufficient energy supply for the storm to intensify. However, the Sg decreases rapidly as the storm quickly intensifies, because the Ds increases more rapidly than the PD near the RMW. By the time the storm reaches its peak intensity, the Ds is about 20% larger than the PD near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the PD and Ds can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local PD under the eyewall is not large enough to balance the Ds, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.
基金supported by National Natural Science Foundation of China(No.50605020)Guangdong Provincial Science and Technology Project of China(No.2006A10501001).
文摘With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing through the EMCVT, one is mechanical power and the other is electric power. In the mean time, there are three power ports in the EMCVT, one is the outer rotor named mechanical power port and the other two are the inner rotor and the stator named electric power ports. The mechanical power port is connected to the driving wheels through the final gear and the electric ports are connected to the batteries through the transducers. The two kinds of power are coupled on the outer rotor of the EMCVT. The EMCVT can be equipped on the conventional vehicle being regarded as the CVT and it also can be equipped on the hybrid electric vehicle(HEV) as the multi-energy sources assembly. The power flows of these two kinds of applications are analysed. The back electromotive force(EMF) equations are illatively studied and so the dynamic mathematic model is theorized. In order to certify the feasibility of the above theories, three simulations are carried out in allusion to the above two kinds of mentioned applications of the EMCVT and a five speed automatic transmission(AT) vehicle. The simulation results illustrate that the efficiency of the EMCVT vehicles is higher than that of the AT vehicle owed to the optimized operation area of the engine. Hence the fuel consumption of the EMCVT vehicles is knock-down.
文摘In order to analyze the gear-rack reliability under the most serious limit loads which was the new-type transmission mechanism of aircraft slats,the gear-rack static strength under the single tooth meshing was analyzed based on the simulation and experiment. Then,it randomized the load of gear-rack based on the precise finite element analysis( FEA) model,and analyzed the static strength reliability of the gear-rack. Finally,the gear-rack under the most dangerous situation has not been destroyed and it also has a high reliability.
基金supported by the Natural Science Foundation of China(61174156 61273189+5 种基金 61174035 61374179 U1435218 6140340171401168)the Army Equipment Research Foundation(012016012600B12507)
文摘Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.
基金Supported by the National'Creative Research Groups Science Foundation of China (No.60421002) and priority supported financially by "the New Century 151 Talent Project" of Zhejiang Province.
文摘A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.