The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy ...The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method.It also occurs on the sea floor as opposed to at the functionality.A set of dynamical partial differential equations(PDEs)in this article exemplify an unconfined aquifer flow implication.Thismethodology can accurately simulate climatological intrinsic waves,so the ripples are spread across a large demographic zone.The Aboodh transform merged with the mechanism of Adomian decomposition is implemented to obtain the fuzzified FBSQe in R,R^(n) and(2nth)-order involving generalized Hukuhara differentiability.According to the system parameter,we classify the qualitative features of the Aboodh transform in the fuzzified Caputo and Atangana-Baleanu-Caputo fractional derivative formulations,which are addressed in detail.The illustrations depict a comparison analysis between the both fractional operators under gH-differentiability,as well as the appropriate attributes for the fractional-order and unpredictability factorsσ∈[0,1].A statistical experiment is conducted between the findings of both fractional derivatives to prevent changing the hypothesis after the results are known.Based on the suggested analyses,hydrodynamic technicians,as irrigation or aquifer quality experts,may be capable of obtaining an appropriate storage intensity amount,including an unpredictability threshold.展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
Due to the increasingly serious environmental pollution and destruction,especially humans' unreasonable activities,the ecological and economic system(EES) issues of Northwest region in China have attracted more an...Due to the increasingly serious environmental pollution and destruction,especially humans' unreasonable activities,the ecological and economic system(EES) issues of Northwest region in China have attracted more and more attention of the researchers.Aiming at evaluating its ecological and economic system health,a multi-objective evaluation framework called PressureState-Response(PSR) was established to describe the ecological and economic health situations.Meanwhile,an integrative set pair model combining set pair analysis(SPA) and fuzzy analytic hierarchy process(FAHP) was proposed to assess the ecological and economic system.Then the EES status of five northwest provinces(Shanxi,Gansu,Qinghai,Ningxia and Xinjiang) of Northwest region in China was evaluated during 1985 to 2009.The EES development trends of five provinces are obtained.In general,the health values of five provinces showed a rising trend.The health values of five provinces grew rapidly during 1985 to 2000.After 2000,the health values of five provinces still followed the present growth trend,but the growth is relatively smooth.The results show that the method proposed is effective for assessing the health of ecological and economic system.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
The stability of a type of Takagi-Sugeno ( T-S) fuzzy control systems is considered. The plant of T-S fuzzy system has parameter uncertainties. By using the off-axis circle criterion and Kharitonov Theorem,a sufficien...The stability of a type of Takagi-Sugeno ( T-S) fuzzy control systems is considered. The plant of T-S fuzzy system has parameter uncertainties. By using the off-axis circle criterion and Kharitonov Theorem,a sufficient condition is derived to analyze the global asymptotic stability of T-S fuzzy control system. The proposed method has a graphical explanation which facilitates stability analysis. A numerical example is also given to demonstrate how to use our approach in analyzing certain T-S fuzzy control systems.展开更多
The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. T...The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).展开更多
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers...The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.展开更多
ISO9001:2000 and TS 16949 have become the major quality system management models in present traditional and Hi-tech industries. The Measurement System Analysis (MSA) Reference Manual, on the other hand, is one of the ...ISO9001:2000 and TS 16949 have become the major quality system management models in present traditional and Hi-tech industries. The Measurement System Analysis (MSA) Reference Manual, on the other hand, is one of the core tools in ISO/TS 16949. MSA aims to evaluate Gauge Repeatability and Reproducibility (GR&R) where the control, monitoring, and maintenance of the measurement process are required in measurement systems so that the measurement capability could be ensured under statistical control. An ideal measurement system should present the statistical characteristic of zero error on any measured product. Nevertheless, such an ideal measurement system hardly exists. Managers therefore have to adopt such measurement systems with unsatisfactory statistical characteristics. Traditional MSA indexes are constructed with definite observed values. Nevertheless, measurements with observed values are not entirely error-free. For this reason, this study proposes to research three cases in a case company and apply the integration of Fuzzy Theory and GR&R to discuss the differences in the evaluation index GR&R and the Number of Distinct Categories (NDC). Substituting fuzzy numbers for definite numbers found that the data of %GR&R were increased and NDC was decreased after fuzzification. Such results verify that the fuzzified %GR&R and NDC become stricter in the determination criterion. The research outcomes could assist the case company in improving the reference data of measurement systems and promoting the measurement quality.展开更多
The comprehensive evaluation method of enterprise core competitiveness is proposed by combining rough sets and gray correlation theories. Firstly,the initial index is screened through rough set attribute reduction alg...The comprehensive evaluation method of enterprise core competitiveness is proposed by combining rough sets and gray correlation theories. Firstly,the initial index is screened through rough set attribute reduction algorithm,and the evaluation weight of each index is obtained through the rough set theory. Then,based on the gray correlation theory, an evaluation model is built for empirical analysis. The 30 financial institutions on the Yangtze River Delta are examined from the theoretical and empirical perspective.The result demonstrates not only the feasibility of rough set attribute reduction algorithm in the core competitiveness index system of the financial institution,but also the accuracy of the combination of these two methods in the comprehensive evaluation of corporate core competitiveness.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
A new instrument based on light projection and image analysis techniques for assessing fabric pilling is presented. This system can automatically detect the pills from the successive sections of the fabric surface, wh...A new instrument based on light projection and image analysis techniques for assessing fabric pilling is presented. This system can automatically detect the pills from the successive sections of the fabric surface, which can make up for the limitation of both the gray level image -analysis techniques and laser triangulab’on techniques. The test of a large number of worsted wool fabric samples shows that it can objectively characterize the degree of pilling by using fuzzy sets and has good accordance with human visual inspection.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass...Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.展开更多
Green transformation is an unavoidable choice for resource-based cities(RBCs)that face resource depletion and environmental pollution.Existing research has focused primarily on specific RBCs,making it challenging to a...Green transformation is an unavoidable choice for resource-based cities(RBCs)that face resource depletion and environmental pollution.Existing research has focused primarily on specific RBCs,making it challenging to apply green transformation strategies universally across cities.The fuzzy set qualitative comparative analysis(fsQCA)is a combination of qualitative and quantitative analyses that can handle multiple concurrent causality problems and determine how different conditions combine into configurations and generate an outcome.Thus,to address this gap,in this study,we established a research framework for green transformation and utilized the fsQCA to examine the configurations of 113 RBCs in China.By incorporating the element of time,this study explored the dynamic evolution of solutions in 2013,2016,and 2019.The main findings indicate that individual elements do not constitute the necessary conditions for improving the green transformation efficiency(GTE),and the systematic combination of multiple conditions is an effective path for realizing the improvement of the GTE in RBCs.Green transformation paths of RBCs exhibit the same destination through different paths.Additionally,the combination of system environment elements and system structure elements is both complementary and alternative.Differences in RBCs have led to various factor combinations and development paths,but there are some similarities in the key elements of the factor combinations at different stages.Economic environment,government support,and technological innovation are key factors that universally enhance the GTE in RBCs.These insights can assist city managers in formulating policies to drive green transformation and contribute to a better theoretical understanding of green transformation paths in RBCs.展开更多
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali...To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.展开更多
Being one of the most expensive components of an electrical power plant, the failures of a power transformer can result in serious power system issues. So fault diagnosis for power transformer is highly important to e...Being one of the most expensive components of an electrical power plant, the failures of a power transformer can result in serious power system issues. So fault diagnosis for power transformer is highly important to ensure an uninterrupted power supply. Due to information transmission mistakes as well as arisen errors while processing data in surveying and monitoring state information of transformer, uncertain and incomplete information may be produced. Based on these points, this paper presents an intelligent fault diagnosis method of power transformer using fuzzy fault tree analysis (FTA) and beta distribution for failure possibility estimation. By using the technique we proposed herein, the continuous attribute values are transformed into the fuzzy numbers to give a realistic estimate of failure possibility of a basic event in FTA. Further, it explains a new approach based on Euclidean distance between fuzzy numbers, to rank the basic events in accordance with their Fuzzy Importance Index.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
文摘The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method.It also occurs on the sea floor as opposed to at the functionality.A set of dynamical partial differential equations(PDEs)in this article exemplify an unconfined aquifer flow implication.Thismethodology can accurately simulate climatological intrinsic waves,so the ripples are spread across a large demographic zone.The Aboodh transform merged with the mechanism of Adomian decomposition is implemented to obtain the fuzzified FBSQe in R,R^(n) and(2nth)-order involving generalized Hukuhara differentiability.According to the system parameter,we classify the qualitative features of the Aboodh transform in the fuzzified Caputo and Atangana-Baleanu-Caputo fractional derivative formulations,which are addressed in detail.The illustrations depict a comparison analysis between the both fractional operators under gH-differentiability,as well as the appropriate attributes for the fractional-order and unpredictability factorsσ∈[0,1].A statistical experiment is conducted between the findings of both fractional derivatives to prevent changing the hypothesis after the results are known.Based on the suggested analyses,hydrodynamic technicians,as irrigation or aquifer quality experts,may be capable of obtaining an appropriate storage intensity amount,including an unpredictability threshold.
基金supported by National Natural Science Foundation of China(61074093,61473048,61233008)the Open Research Project from SKLMCCS(20150101)Youth Talent Support Plan of Changsha University of Science and Technology
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.
基金supported in partially by the National Society Science Fund of China(Grant No.09CJY020)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,China(Grant No. 2011585312)+1 种基金the Fundamental Research Funds for the Central Universities of Hohai University2010 Jiangsu Province Qing Lan Project
文摘Due to the increasingly serious environmental pollution and destruction,especially humans' unreasonable activities,the ecological and economic system(EES) issues of Northwest region in China have attracted more and more attention of the researchers.Aiming at evaluating its ecological and economic system health,a multi-objective evaluation framework called PressureState-Response(PSR) was established to describe the ecological and economic health situations.Meanwhile,an integrative set pair model combining set pair analysis(SPA) and fuzzy analytic hierarchy process(FAHP) was proposed to assess the ecological and economic system.Then the EES status of five northwest provinces(Shanxi,Gansu,Qinghai,Ningxia and Xinjiang) of Northwest region in China was evaluated during 1985 to 2009.The EES development trends of five provinces are obtained.In general,the health values of five provinces showed a rising trend.The health values of five provinces grew rapidly during 1985 to 2000.After 2000,the health values of five provinces still followed the present growth trend,but the growth is relatively smooth.The results show that the method proposed is effective for assessing the health of ecological and economic system.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金Sponsored by the National Natural Science Foundation (Grant No.60874084)the Academy of Finland (Grant No.135225)
文摘The stability of a type of Takagi-Sugeno ( T-S) fuzzy control systems is considered. The plant of T-S fuzzy system has parameter uncertainties. By using the off-axis circle criterion and Kharitonov Theorem,a sufficient condition is derived to analyze the global asymptotic stability of T-S fuzzy control system. The proposed method has a graphical explanation which facilitates stability analysis. A numerical example is also given to demonstrate how to use our approach in analyzing certain T-S fuzzy control systems.
文摘The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).
基金This project was supported by the fundation of the Academy of Finland (201353)
文摘The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
文摘ISO9001:2000 and TS 16949 have become the major quality system management models in present traditional and Hi-tech industries. The Measurement System Analysis (MSA) Reference Manual, on the other hand, is one of the core tools in ISO/TS 16949. MSA aims to evaluate Gauge Repeatability and Reproducibility (GR&R) where the control, monitoring, and maintenance of the measurement process are required in measurement systems so that the measurement capability could be ensured under statistical control. An ideal measurement system should present the statistical characteristic of zero error on any measured product. Nevertheless, such an ideal measurement system hardly exists. Managers therefore have to adopt such measurement systems with unsatisfactory statistical characteristics. Traditional MSA indexes are constructed with definite observed values. Nevertheless, measurements with observed values are not entirely error-free. For this reason, this study proposes to research three cases in a case company and apply the integration of Fuzzy Theory and GR&R to discuss the differences in the evaluation index GR&R and the Number of Distinct Categories (NDC). Substituting fuzzy numbers for definite numbers found that the data of %GR&R were increased and NDC was decreased after fuzzification. Such results verify that the fuzzified %GR&R and NDC become stricter in the determination criterion. The research outcomes could assist the case company in improving the reference data of measurement systems and promoting the measurement quality.
文摘The comprehensive evaluation method of enterprise core competitiveness is proposed by combining rough sets and gray correlation theories. Firstly,the initial index is screened through rough set attribute reduction algorithm,and the evaluation weight of each index is obtained through the rough set theory. Then,based on the gray correlation theory, an evaluation model is built for empirical analysis. The 30 financial institutions on the Yangtze River Delta are examined from the theoretical and empirical perspective.The result demonstrates not only the feasibility of rough set attribute reduction algorithm in the core competitiveness index system of the financial institution,but also the accuracy of the combination of these two methods in the comprehensive evaluation of corporate core competitiveness.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
文摘A new instrument based on light projection and image analysis techniques for assessing fabric pilling is presented. This system can automatically detect the pills from the successive sections of the fabric surface, which can make up for the limitation of both the gray level image -analysis techniques and laser triangulab’on techniques. The test of a large number of worsted wool fabric samples shows that it can objectively characterize the degree of pilling by using fuzzy sets and has good accordance with human visual inspection.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
基金supported by National Natural Science Foundation of China(Grant No.50835001)Research and Innovation Teams Foundation Project of Ministry of Education of China(Grant No.IRT0610)Liaoning Provincial Key Laboratory Foundation Project of China(Grant No.20060132)
文摘Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.
基金supported by the Chongqing Social Science Planning Fund,China(2023BS034)the Science and Technology Project of Chongqing Jiaotong University,China(F1230069).
文摘Green transformation is an unavoidable choice for resource-based cities(RBCs)that face resource depletion and environmental pollution.Existing research has focused primarily on specific RBCs,making it challenging to apply green transformation strategies universally across cities.The fuzzy set qualitative comparative analysis(fsQCA)is a combination of qualitative and quantitative analyses that can handle multiple concurrent causality problems and determine how different conditions combine into configurations and generate an outcome.Thus,to address this gap,in this study,we established a research framework for green transformation and utilized the fsQCA to examine the configurations of 113 RBCs in China.By incorporating the element of time,this study explored the dynamic evolution of solutions in 2013,2016,and 2019.The main findings indicate that individual elements do not constitute the necessary conditions for improving the green transformation efficiency(GTE),and the systematic combination of multiple conditions is an effective path for realizing the improvement of the GTE in RBCs.Green transformation paths of RBCs exhibit the same destination through different paths.Additionally,the combination of system environment elements and system structure elements is both complementary and alternative.Differences in RBCs have led to various factor combinations and development paths,but there are some similarities in the key elements of the factor combinations at different stages.Economic environment,government support,and technological innovation are key factors that universally enhance the GTE in RBCs.These insights can assist city managers in formulating policies to drive green transformation and contribute to a better theoretical understanding of green transformation paths in RBCs.
文摘To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.
文摘Being one of the most expensive components of an electrical power plant, the failures of a power transformer can result in serious power system issues. So fault diagnosis for power transformer is highly important to ensure an uninterrupted power supply. Due to information transmission mistakes as well as arisen errors while processing data in surveying and monitoring state information of transformer, uncertain and incomplete information may be produced. Based on these points, this paper presents an intelligent fault diagnosis method of power transformer using fuzzy fault tree analysis (FTA) and beta distribution for failure possibility estimation. By using the technique we proposed herein, the continuous attribute values are transformed into the fuzzy numbers to give a realistic estimate of failure possibility of a basic event in FTA. Further, it explains a new approach based on Euclidean distance between fuzzy numbers, to rank the basic events in accordance with their Fuzzy Importance Index.