According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein...Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.展开更多
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
Barley(Hordeum vulgare L.)is an important economic crop for food,feed and industrial raw materials.In the present research,112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing(GB...Barley(Hordeum vulgare L.)is an important economic crop for food,feed and industrial raw materials.In the present research,112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing(GBS),and the genetic diversity and population structure were analyzed.The results showed that 210,268 Single Nucleotide Polymorphisms(SNPs)were present in total,and the average poly-morphism information content(PIC)was 0.1642.Genetic diversity and population structure analyses suggested that these barley landraces were differentiated and could be divided into three sub-groups,with morphological traits of row-type and adherence of the hulls the main distinguishing factors between groups.Genotypes with similar or duplicated names were also investigated according to their genetic backgrounds and seed appearances.This study provided valuable information on barley landraces from the Shanghai region,and showed that all these barley landraces should be protected and used for future breeding programs.展开更多
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ...Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.展开更多
Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root findi...Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.展开更多
This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the co...This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element model...The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones.展开更多
In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in...In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were...Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.展开更多
[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and Inte...[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and InterPro Scan were adopted to analyze the structure and predict its function.[Result] HpaGXoo consists of 139 amino acids,and has many alpha-helical and coiled structure,no signal peptide on N-terminal and no transmembrane structure.It locates in bacterial cytoplasm.[Conclusion] The study will lay ...展开更多
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their po...Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.展开更多
[Objective] The aim was to explore function and efficiency of emergy input/ output of Hunan agricultural ecosystem to reveal relationship of human being with natural resources and environment. [Method] Emergy structur...[Objective] The aim was to explore function and efficiency of emergy input/ output of Hunan agricultural ecosystem to reveal relationship of human being with natural resources and environment. [Method] Emergy structure, function and efficien- cy of Hunan agricultural ecosystem were analyzed based on input/output data in Hunan Province in 2009 as per emergy theory. [Result] The structure characters of agricultural ecosystem were as follows: Hunan is characterized with traditional agri- culture, depending greatly on both human and animal labor. For industrial accessory emergy, chemical fertilizers make most contribution to the system, and agricultural mechanization is not satisfied. Furthermore, renewable ratio of industrial accessory emergy is lower, and development and potential of green energy is promising. In addition, prices of the products are lower, without consideration of contribution made by natural resources and environment. It also suggested that Hunan agricultural chain is short and added value of products is not high. In general, emergy output of farming and animal husbandry dominates and the prices are lower than those of forestry and fishery. The function of the system was as follows: With lower environ- mental load ratio, the system is overloaded by population and the index of sustain- able development was 5.96, suggesting that the system enjoys vitality and potential, but the economy is undeveloped and the pressure from natural resources and envi- ronment is not high. The emergy output ratio was a little lower than national level in 2009, suggesting Hunan agricultural production is extensive. [Conclusion] The re- search indicated that rapid increase of population should be controlled; surplus labor should be transferred; agricultural structure and products structure should be further adjusted; agricultural technology should be further developed; agdcultural mechaniza- tion and modernization should be improved.展开更多
To determine the correlations between the tree structuresof Fuji apple with different pruning modes and each factor, the data about 3 tree structures which were free spindle short shoot, free spindle long shoot and sl...To determine the correlations between the tree structuresof Fuji apple with different pruning modes and each factor, the data about 3 tree structures which were free spindle short shoot, free spindle long shoot and slenderspindle short shoot in Xingtang County of Hebai Province were investigated, then by SPSS anal- ysis, the correlations between the taperingness and each growth factor of inserted small branch were compared. The results showed that the taperingness of central trunk of free spindle dwarf-shoot Fuji apple treeshad negative correlations with each factor of inserted small branch, while the taperingness of central trunk of free spin- dle long-shoot Fuji apple treeshad positive correlations with each factor of inserted small branch, the taperingness of central trunk of slenderspindle short-shootFuji ap- ple treeshad negative correlation with total thickness of inserted small branch, but had positive correlations with other factors. This study can provide a scientifictheo- retical basis for the pruning technology of high-density planting trees grafting by dwarfing self-rooted rootstock.展开更多
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金support from the National Key R&D Program of China(Grant Nos.2021YFB2600605,2021YFB2600600)the Overseas Scholar Program in the Hebei Province(C20190514)+1 种基金from the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures Project(ZZ2020-20)from the Youth Foundation of Hebei Science and Technology Research Project(QN2018108).
文摘Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
基金funded by the Shanghai Agriculture Applied Technology Development Program(Grant No.2019-02-08-00-08-F01109)the Climbing Plan(Grant No.PG22211)and the Ear-Marked Fund for CARS(Grant No.CARS-05-01A-02)N.G.H.is supported at Rothamsted Research by the Biotechnology and Biological Sciences Research Council(BBSRC)via the Designing Future Wheat Programme(BB/P016855/1).
文摘Barley(Hordeum vulgare L.)is an important economic crop for food,feed and industrial raw materials.In the present research,112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing(GBS),and the genetic diversity and population structure were analyzed.The results showed that 210,268 Single Nucleotide Polymorphisms(SNPs)were present in total,and the average poly-morphism information content(PIC)was 0.1642.Genetic diversity and population structure analyses suggested that these barley landraces were differentiated and could be divided into three sub-groups,with morphological traits of row-type and adherence of the hulls the main distinguishing factors between groups.Genotypes with similar or duplicated names were also investigated according to their genetic backgrounds and seed appearances.This study provided valuable information on barley landraces from the Shanghai region,and showed that all these barley landraces should be protected and used for future breeding programs.
基金supported by Foundation of Henan Educational Committee(20A560004,J.Z.)Foundation of Henan Science and Technology Project(182102311086,Y.W.)Foundation for University Key Teacher(YCJQNGGJS201901,J.Z.,YCJXSJSDTR201801,Y.W.,Henan University of Urban Construction).
文摘Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.
文摘Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.
基金supported by the Key Project of China Coal Technology and Engineering Group(No.2020-2-TD-ZD003).
文摘This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
基金Project(30770576) supported by the National Natural Science Foundation of ChinaProject(2007AA03Z114) supported by Hi-tech Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,China
文摘The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones.
基金supported in part by the National Natural Science Foundation of China(Grant No.40974069)PetroChina Innovation Foundation(Grant No.2009D-5006-03-01)+1 种基金National Key Basic Research Development Program(GrantNo.2007CB209601)National Major Science and Technology Program(Grant Nos.2008ZX05010-002 and 2008ZX05024-001)
文摘In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
基金supported by grants from the National Key R&D Program of China(2019YFC1606701)。
文摘Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.
基金Supported by Langfang Teachers College Research Grant(LSZB200803)~~
文摘[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and InterPro Scan were adopted to analyze the structure and predict its function.[Result] HpaGXoo consists of 139 amino acids,and has many alpha-helical and coiled structure,no signal peptide on N-terminal and no transmembrane structure.It locates in bacterial cytoplasm.[Conclusion] The study will lay ...
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.
文摘Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
基金Supported by National Social Science Foundation (11BJY029)Hunan Social ScienceFoundation (2010YBB348)+1 种基金Innovation Platform Funds of Hunan High Institutions(10K080)Hunan Soft Science Key Project (2011ZK2046)~~
文摘[Objective] The aim was to explore function and efficiency of emergy input/ output of Hunan agricultural ecosystem to reveal relationship of human being with natural resources and environment. [Method] Emergy structure, function and efficien- cy of Hunan agricultural ecosystem were analyzed based on input/output data in Hunan Province in 2009 as per emergy theory. [Result] The structure characters of agricultural ecosystem were as follows: Hunan is characterized with traditional agri- culture, depending greatly on both human and animal labor. For industrial accessory emergy, chemical fertilizers make most contribution to the system, and agricultural mechanization is not satisfied. Furthermore, renewable ratio of industrial accessory emergy is lower, and development and potential of green energy is promising. In addition, prices of the products are lower, without consideration of contribution made by natural resources and environment. It also suggested that Hunan agricultural chain is short and added value of products is not high. In general, emergy output of farming and animal husbandry dominates and the prices are lower than those of forestry and fishery. The function of the system was as follows: With lower environ- mental load ratio, the system is overloaded by population and the index of sustain- able development was 5.96, suggesting that the system enjoys vitality and potential, but the economy is undeveloped and the pressure from natural resources and envi- ronment is not high. The emergy output ratio was a little lower than national level in 2009, suggesting Hunan agricultural production is extensive. [Conclusion] The re- search indicated that rapid increase of population should be controlled; surplus labor should be transferred; agricultural structure and products structure should be further adjusted; agricultural technology should be further developed; agdcultural mechaniza- tion and modernization should be improved.
文摘To determine the correlations between the tree structuresof Fuji apple with different pruning modes and each factor, the data about 3 tree structures which were free spindle short shoot, free spindle long shoot and slenderspindle short shoot in Xingtang County of Hebai Province were investigated, then by SPSS anal- ysis, the correlations between the taperingness and each growth factor of inserted small branch were compared. The results showed that the taperingness of central trunk of free spindle dwarf-shoot Fuji apple treeshad negative correlations with each factor of inserted small branch, while the taperingness of central trunk of free spin- dle long-shoot Fuji apple treeshad positive correlations with each factor of inserted small branch, the taperingness of central trunk of slenderspindle short-shootFuji ap- ple treeshad negative correlation with total thickness of inserted small branch, but had positive correlations with other factors. This study can provide a scientifictheo- retical basis for the pruning technology of high-density planting trees grafting by dwarfing self-rooted rootstock.