An iteration method similar to the thin-wing-expansion method for the compressible flow has been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first step of which is Oseen’...An iteration method similar to the thin-wing-expansion method for the compressible flow has been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first step of which is Oseen’s approximation, the boundary layer past a flat plate is studied. As proceeding from the first approximation to the second and third approximations, it is realized that our solution approaches to a well known Howarth’s bench mark one gradually. Hence, it is concluded that the usefulness of the present method has been confirmed.展开更多
This paper aims to present complete series solution of non-similarity boundary-layer flow of an incompressible viscous fluid over a porous wedge. The corresponding nonlinear partial differential equations are solved a...This paper aims to present complete series solution of non-similarity boundary-layer flow of an incompressible viscous fluid over a porous wedge. The corresponding nonlinear partial differential equations are solved analytically by means of the homotopy analysis method (HAM). An auxiliary parameter is introduced to ensure the convergence of solution series. As a result, series solutions valid for all physical parameters in the whole domain are given. Then, the effects of physical parameters γ and Prandtl number Pr on the local Nusselt number and momentum thickness are investigated. To the best of our knowledge, it is the first time that the series solutions of this kind of non-similarity boundary-layer flows are reported.展开更多
The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable incl...The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).展开更多
In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity ...In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream.展开更多
The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating veloc...The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.展开更多
The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group ...The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.展开更多
Closed-form and asymptotic solutions are derived for the steady, fully-developed hydromagnetic free and forced convection flow in a rotating horizontal parallel-plate channel under the action of an inclined magnetic f...Closed-form and asymptotic solutions are derived for the steady, fully-developed hydromagnetic free and forced convection flow in a rotating horizontal parallel-plate channel under the action of an inclined magnetic field and constant pressure gradient along the longitudinal axis of the channel. The magnetic field is strong enough to generate Hall current effects and the magnetic Reynolds number of sufficient magnitude that induced magnetic field effects are also present. Secondary flow is present owing to the Hall current effect. The channel plates are also taken to be electrically-conducting. The conservation equations are formulated in an (x, y, z) coordinate system and non-dimensionalized using appropriate transformations. The resulting non-dimensional coupled ordinary differential equations for primary and secondary velocity components and primary and secondary induced magnetic field components and transformed boundary conditions are shown to be controlled by the dimensionless pressure gradient parameter (px), Hartmann number (M2), Grashof number (G), Hall current parameter (m), rotational parameter (K2), magnetic field inclination (Θ), and the electrical conductance ratios of the upper (⏱) and lower (⏲) plates. Solutions are derived using the method of complex variables. Asymptotic solutions are also presented for very high rotation parameter and Hartmann number of order equal to unity, for which Ekman-Hartmann boundary layers are identified at the plates. A parametric study of the evolution of velocity and induced magnetic field distributions is undertaken. It is shown that generally increasing Hall current effect (m) serves to accentuate the secondary (cross) flow but oppose the primary flow. An increase in rotational parameter (K2) is also found to counteract primary flow intensity. An elevation in the Grashof number i.e. free convection parameter (G) is shown to aid the secondary induced magnetic field component (Hz);however there is a decrease in magnitudes of the primary induced magnetic field component (Hx) with increasing Grashof number. Increasing inclination of the applied magnetic field (Θ, is also found to oppose the primary flow (u1) but conversely to strongly assist the secondary flow (w1). Both critical primary (Gcx) and secondary (Gcz)Grashof numbers are shown to be reduced with increasing inclination of the magnetic field (Θ), increasing Hall parameter (m) and rotational parameter (K2). Applications of the study arise in rotating MHD induction power generators and also astrophysical flows.展开更多
The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented. The Saffman lift force acting on a particle in a shear flow is taken into account. It is shown that ...The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented. The Saffman lift force acting on a particle in a shear flow is taken into account. It is shown that particle migration across the boundary layer leads to intersections of particle trajectories. The corresponding modification of dusty gas model is proposed in this paper.The equations of two-phase sidewall boundary layer behind a shock wave moving at a constant speed are obtained by using the method of matched asymptotic expansions. The method of the calculation of particle phase parameters in Lagrangian coordinates is described in detail. Some numerical results for the case of small particle concentration are given.展开更多
Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce iso...Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce isotropy of turbulence. In order to confirm our previous analysis and to further investigate flow fields in the vicinity of bubbles, we analyze velocity fluctuations on the quadrant space in the streamwise and transverse directions (u′-v′ plane). Here, we focus on two specific Reynolds numbers (at Re≈900 and ≈1410, which are close to the laminar-to-turbulent transition regime) and discuss bubble effects on sweep (u′〉 0, v′〈 0 ) and ejection (u′〈 0, v′〉 0) events as a function of the Reynolds number. We also illustrate velocity fluctuations in the vicinity of an individual bubble and a swarm of bubbles on the u′- v′ coordinates. The results show that a bubble swarm suppresses the velocity fluctuations at Re≈1410.展开更多
The non-similarity solution for natural convection from a permeable isothermal vertical wall is considered. The governing boundary-layer equations for non-similarity flow and temperature fields are solved using the ho...The non-similarity solution for natural convection from a permeable isothermal vertical wall is considered. The governing boundary-layer equations for non-similarity flow and temperature fields are solved using the homotopy analysis method. The homotopy-Pade’ technique is applied to accelerate the convergence of the homotopy-series solution. The influence of physical parameters on the non-similarity flows is investigated in detail. Different from the previous analytic results,the homotopy-series solutions are convergent and valid for all physical parameters in the whole domain 0 x 【 ∞ and 0 y 【 ∞.展开更多
The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simul...The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.展开更多
文摘An iteration method similar to the thin-wing-expansion method for the compressible flow has been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first step of which is Oseen’s approximation, the boundary layer past a flat plate is studied. As proceeding from the first approximation to the second and third approximations, it is realized that our solution approaches to a well known Howarth’s bench mark one gradually. Hence, it is concluded that the usefulness of the present method has been confirmed.
文摘This paper aims to present complete series solution of non-similarity boundary-layer flow of an incompressible viscous fluid over a porous wedge. The corresponding nonlinear partial differential equations are solved analytically by means of the homotopy analysis method (HAM). An auxiliary parameter is introduced to ensure the convergence of solution series. As a result, series solutions valid for all physical parameters in the whole domain are given. Then, the effects of physical parameters γ and Prandtl number Pr on the local Nusselt number and momentum thickness are investigated. To the best of our knowledge, it is the first time that the series solutions of this kind of non-similarity boundary-layer flows are reported.
文摘The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).
文摘In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream.
基金The project supported by the National Natural Science Foundation of China
文摘The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.
基金Project supported by the National Natural Science Foundation of China (No. 50936003)the Open Project of State Key Laboratory for Advanced Metals and Materials and the Research Foundation of Engineering Research Institute of University of Science and Technology Beijing (No. 2009Z-02)
文摘The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.
文摘Closed-form and asymptotic solutions are derived for the steady, fully-developed hydromagnetic free and forced convection flow in a rotating horizontal parallel-plate channel under the action of an inclined magnetic field and constant pressure gradient along the longitudinal axis of the channel. The magnetic field is strong enough to generate Hall current effects and the magnetic Reynolds number of sufficient magnitude that induced magnetic field effects are also present. Secondary flow is present owing to the Hall current effect. The channel plates are also taken to be electrically-conducting. The conservation equations are formulated in an (x, y, z) coordinate system and non-dimensionalized using appropriate transformations. The resulting non-dimensional coupled ordinary differential equations for primary and secondary velocity components and primary and secondary induced magnetic field components and transformed boundary conditions are shown to be controlled by the dimensionless pressure gradient parameter (px), Hartmann number (M2), Grashof number (G), Hall current parameter (m), rotational parameter (K2), magnetic field inclination (Θ), and the electrical conductance ratios of the upper (⏱) and lower (⏲) plates. Solutions are derived using the method of complex variables. Asymptotic solutions are also presented for very high rotation parameter and Hartmann number of order equal to unity, for which Ekman-Hartmann boundary layers are identified at the plates. A parametric study of the evolution of velocity and induced magnetic field distributions is undertaken. It is shown that generally increasing Hall current effect (m) serves to accentuate the secondary (cross) flow but oppose the primary flow. An increase in rotational parameter (K2) is also found to counteract primary flow intensity. An elevation in the Grashof number i.e. free convection parameter (G) is shown to aid the secondary induced magnetic field component (Hz);however there is a decrease in magnitudes of the primary induced magnetic field component (Hx) with increasing Grashof number. Increasing inclination of the applied magnetic field (Θ, is also found to oppose the primary flow (u1) but conversely to strongly assist the secondary flow (w1). Both critical primary (Gcx) and secondary (Gcz)Grashof numbers are shown to be reduced with increasing inclination of the magnetic field (Θ), increasing Hall parameter (m) and rotational parameter (K2). Applications of the study arise in rotating MHD induction power generators and also astrophysical flows.
文摘The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented. The Saffman lift force acting on a particle in a shear flow is taken into account. It is shown that particle migration across the boundary layer leads to intersections of particle trajectories. The corresponding modification of dusty gas model is proposed in this paper.The equations of two-phase sidewall boundary layer behind a shock wave moving at a constant speed are obtained by using the method of matched asymptotic expansions. The method of the calculation of particle phase parameters in Lagrangian coordinates is described in detail. Some numerical results for the case of small particle concentration are given.
文摘Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce isotropy of turbulence. In order to confirm our previous analysis and to further investigate flow fields in the vicinity of bubbles, we analyze velocity fluctuations on the quadrant space in the streamwise and transverse directions (u′-v′ plane). Here, we focus on two specific Reynolds numbers (at Re≈900 and ≈1410, which are close to the laminar-to-turbulent transition regime) and discuss bubble effects on sweep (u′〉 0, v′〈 0 ) and ejection (u′〈 0, v′〉 0) events as a function of the Reynolds number. We also illustrate velocity fluctuations in the vicinity of an individual bubble and a swarm of bubbles on the u′- v′ coordinates. The results show that a bubble swarm suppresses the velocity fluctuations at Re≈1410.
基金partly supported by National Natural Science Foundation ofChina (Grant No. 10872129)State Key Lab of Ocean Engineering(Grant No. GKZD010002)
文摘The non-similarity solution for natural convection from a permeable isothermal vertical wall is considered. The governing boundary-layer equations for non-similarity flow and temperature fields are solved using the homotopy analysis method. The homotopy-Pade’ technique is applied to accelerate the convergence of the homotopy-series solution. The influence of physical parameters on the non-similarity flows is investigated in detail. Different from the previous analytic results,the homotopy-series solutions are convergent and valid for all physical parameters in the whole domain 0 x 【 ∞ and 0 y 【 ∞.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.