Simultaneous impedance analysis of three one-face sealed resonating piezoelectric quartz crystals (PQCs) in parallel is proposed through admittance measurements of the three PQCs on one impedance analyzer and then non...Simultaneous impedance analysis of three one-face sealed resonating piezoelectric quartz crystals (PQCs) in parallel is proposed through admittance measurements of the three PQCs on one impedance analyzer and then non-linear fitting according to the parallel combination of three Butterworth-Van Dyke circuits. Responses of each PQC obtained from the three-PQC mode agreed well with those measured separately in series sucrose aqueous solutions. This novel method has been used for the study of depletion-layer effect during ferri-/ferrocyanide electrochemical reactions.展开更多
The three-dimensional framework copper(Ⅱ) coordination polymer with basic copper carbonate and 3-(pyridin-2-yl)-1,2,4-triazole has been hydrothermally synthesized. It crystallizes in monoclinic space group P21/c,...The three-dimensional framework copper(Ⅱ) coordination polymer with basic copper carbonate and 3-(pyridin-2-yl)-1,2,4-triazole has been hydrothermally synthesized. It crystallizes in monoclinic space group P21/c, with a = 1.20860(3), b = 1.29581(2), c = 1.67863(3) nm, β = 116.0280(2)°, C21H12Cu3N12, Mr = 623.05, V = 2.36230(9) nm3, Dc = 1.752 g/cm3, Z = 4, F(000) = 1236, GOOF = 1.037, the final R = 0.0408 and wR = 0.1141. Every unit cell contains three copper atoms and three 3-(pyridin-2-yl)-1,2,4-triazole ligands. Every central Cu(Ⅱ) ion is coordinated by four nitrogen atoms of the 3-(pyridin-2-yl)-1,2,4-triazole ligands, forming a distorted tetrahedron. The title complex exhibits an intense photoluminescence at room temperature with the maximum emission at 392 nm. The cyclic voltametric behavior of the complex shows that the electron transfer in electrolysis reaction is irreversible.展开更多
Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating su...Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.展开更多
Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,a...Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,and explosion.Many different test standards that include abuse conditions have been developed,but these generally consider only one condition at a time and only provide go/no-go criteria.In this work,different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure.Vibrational loading is chosen to be the consistent type of physical abuse,and the first group of cells is cycled at different vibrational frequencies.The next group of cells is cycled at the same frequencies,with multiple charge pulses occurring during each discharge.The final group of cells is cycled at the same frequencies,with a partial nail puncture occurring near the beginning of cycling.The results show that abusing cells with vibrational loading or vibrational loading with current pulses does not cause a significant decrease in operational capabilities while abusing cells with vibrational loading and a nail puncture drastically reduces operational capabilities.The cells with vibration only experience an increase in internal resistance by a factor of 1.09–1.26,the cells with vibration and current pulses experience an increase in internal resistance by a factor of 1.16–1.23,and all cells from each group reach their rated lifetime of 500 cycles without reaching their end-of-life capacity.However,the cells with vibration and nail puncture experience an increase in internal resistance by a factor of 6.83–22.1,and each cell reaches its end-of-life capacity within 50 cycles.Overall,the results show that testing multiple abuse conditions simultaneously provides a better representation of the extreme limitations of cell operation and should be considered for inclusion in reference test standards.展开更多
Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was...Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was prepared from nickel sulphate solution using potassium hydroxide as a precipitating agent. Pure β-phase of nickel hydroxide was confirmed from XRD and FT-IR studies. The effects of TiO2 additive on the β-Ni(OH)2 electrode performance are examined. The structure and property of the TiO2 added β-Ni(OH)2 were characterized by XRD, TG-DTA and SEM analysis. A pasted–type electrode is prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry and electrochemical impedance spectroscopy studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 and TiO2 added β-Ni(OH)2 electrodes in 6 M KOH electrolyte. Anodic(Epa) and cathodic(Epc)peak potentials are found to decrease after the addition of TiO 2 into β-Ni(OH)2 electrode material. Further,addition of TiO2 is found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. Compared with pure β-Ni(OH)2 lectrode,TiO2 added β-Ni(OH)2 electrode is found to exhibit higher proton diffusion coefficient(D) and lower charge transfer resistance. These findings suggest that the TiO2 added β-Ni(OH)2 electrode possess improved electrochemical properties and thus can be recognized as a promising candidate for the battery electrode applications.展开更多
Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu...Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.展开更多
Organic coatings are widely used to control the corrosion of steel structure. The anticorrosive property of these coatings depends on their barrier properties, making a separation between the corrosive medium and the ...Organic coatings are widely used to control the corrosion of steel structure. The anticorrosive property of these coatings depends on their barrier properties, making a separation between the corrosive medium and the substrate. But unavoidable completely small pores, cracks and other defects in organic coatings may cause ions, water, gases, and other corrosive species penetrate and distribute in the coatings, causing accumulation and swelling of coatings, so leading to the degradation of coatings. In addition, water affects the permeation of oxygen and other corrosive medium, consequently the presence of such substances at coating-metal interface promotes corrosion of metal substrate. So the absorbability of the coatings to water may be one of the most important factors in undercoating corrosion. In recent years, electrochemical impedance spectroscopy (EIS) has been established and frequently used as a non-destructive testing method for assessing the performance of organic coatings, especially for the determination of the water content in organic coatings, since the capacitance of the coatings is sensitive to the penetration of water. So from EIS it can extract a wealth of information on the electrochemical corrosion of coated steels, especially, it can be utilized to assess organic coatings used under particular surroundings. The principle, methods and application of EIS on evaluating life-span and analyzing failure mechanism of organic coatings are also introduced briefly. Combining other analysis techniques such as XRD, SEM and FTIR with electrochemical technique, it will blaze a way in studying degradation mechanism of organic coatings and estimating their lifetime.展开更多
For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and...For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and low density besides its ability to retain strength and stiffness at elevated temperatures. However NiAl intermetallic is too hard, brittle and exhibits very low ductility at room temperature being the reason because this material is not yet available for structural applications. In order to increase the ductility of the NiAl intermetallic compound, the addition of a third alloying element has been proved, nevertheless it is important to determine if such additions decrease or increase the hardness and the corrosion resistance of the alloy. So, the present investigation reports the corrosion performance of the NiAl intermetallic compound modified with Cu, emphasizing the EIS analysis and the relation between physical parameters and the modelling equations used in the Equivalent Electric Circuit. It was found that the addition of Cu promotes the formation of the γ’-Ni<sub>3</sub>Al phase in Cu contents greater than 15 at. %, in addition to a decrease in micro hardness and an increment in the I<sub>corr</sub> values. In this way, the electrochemical characterization evidenced a high corrosion resistance of these intermetallic alloys.展开更多
Electrochemical impedance spectroscopy(EIS)contributes to developing the fault diagnosis tools for fuel cells,which is of great significance in improving service life.The conventional impedance measurement techniques ...Electrochemical impedance spectroscopy(EIS)contributes to developing the fault diagnosis tools for fuel cells,which is of great significance in improving service life.The conventional impedance measurement techniques are limited to linear responses,failing to capture high-order harmonic responses.However,nonlinear electrochemical impedance analysis incorporates additional nonlinear information,enabling the resolution of such responses.This study proposes a novel multi-stage fault diagnosis method based on the nonlinear electrochemical impedance spectrum(NEIS).First,the impact of alternating current excitation amplitude on NEIS is analyzed.Then,a series of experiments are conducted to obtain NEIS data under various fault conditions,encompassing recoverable faults like flooding,drying,starvation,and their mixed faults,spanning different degrees of fault severity.Based on these experiments,both EIS and NEIS datasets are established,and principal component analysis is utilized to extract the main features,thereby reducing the dimensionality of the original data.Finally,a fault diagnosis model is constructed with the support vector machine(SVM)and random forest algorithms,with model hyperparameters optimized by a hybrid genetic particle swarm optimization(HGAPSO)algorithm.The results show that the diagnostic accuracy of NEIS is higher than that of traditional EIS,with the HGAPSO-SVM model achieving a 100%accurate diagnosis under the NEIS dateset and self-defined fault labels.展开更多
文摘Simultaneous impedance analysis of three one-face sealed resonating piezoelectric quartz crystals (PQCs) in parallel is proposed through admittance measurements of the three PQCs on one impedance analyzer and then non-linear fitting according to the parallel combination of three Butterworth-Van Dyke circuits. Responses of each PQC obtained from the three-PQC mode agreed well with those measured separately in series sucrose aqueous solutions. This novel method has been used for the study of depletion-layer effect during ferri-/ferrocyanide electrochemical reactions.
基金the Fund of Hunan Provincial Natural Science Foundation of China (No. 11JJ9006)Science and Technology Committee of Hunan Province (2012WK3029, 2012GK3031, 2011FJ3037)
文摘The three-dimensional framework copper(Ⅱ) coordination polymer with basic copper carbonate and 3-(pyridin-2-yl)-1,2,4-triazole has been hydrothermally synthesized. It crystallizes in monoclinic space group P21/c, with a = 1.20860(3), b = 1.29581(2), c = 1.67863(3) nm, β = 116.0280(2)°, C21H12Cu3N12, Mr = 623.05, V = 2.36230(9) nm3, Dc = 1.752 g/cm3, Z = 4, F(000) = 1236, GOOF = 1.037, the final R = 0.0408 and wR = 0.1141. Every unit cell contains three copper atoms and three 3-(pyridin-2-yl)-1,2,4-triazole ligands. Every central Cu(Ⅱ) ion is coordinated by four nitrogen atoms of the 3-(pyridin-2-yl)-1,2,4-triazole ligands, forming a distorted tetrahedron. The title complex exhibits an intense photoluminescence at room temperature with the maximum emission at 392 nm. The cyclic voltametric behavior of the complex shows that the electron transfer in electrolysis reaction is irreversible.
文摘Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.
基金Funding for this research has been provided by the Office of Naval Research(ONR)under the Grant N00014-20-1-2227(Program Manager:Dr.Maria Medeiros and Dr.Corey Love).
文摘Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,and explosion.Many different test standards that include abuse conditions have been developed,but these generally consider only one condition at a time and only provide go/no-go criteria.In this work,different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure.Vibrational loading is chosen to be the consistent type of physical abuse,and the first group of cells is cycled at different vibrational frequencies.The next group of cells is cycled at the same frequencies,with multiple charge pulses occurring during each discharge.The final group of cells is cycled at the same frequencies,with a partial nail puncture occurring near the beginning of cycling.The results show that abusing cells with vibrational loading or vibrational loading with current pulses does not cause a significant decrease in operational capabilities while abusing cells with vibrational loading and a nail puncture drastically reduces operational capabilities.The cells with vibration only experience an increase in internal resistance by a factor of 1.09–1.26,the cells with vibration and current pulses experience an increase in internal resistance by a factor of 1.16–1.23,and all cells from each group reach their rated lifetime of 500 cycles without reaching their end-of-life capacity.However,the cells with vibration and nail puncture experience an increase in internal resistance by a factor of 6.83–22.1,and each cell reaches its end-of-life capacity within 50 cycles.Overall,the results show that testing multiple abuse conditions simultaneously provides a better representation of the extreme limitations of cell operation and should be considered for inclusion in reference test standards.
文摘Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was prepared from nickel sulphate solution using potassium hydroxide as a precipitating agent. Pure β-phase of nickel hydroxide was confirmed from XRD and FT-IR studies. The effects of TiO2 additive on the β-Ni(OH)2 electrode performance are examined. The structure and property of the TiO2 added β-Ni(OH)2 were characterized by XRD, TG-DTA and SEM analysis. A pasted–type electrode is prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry and electrochemical impedance spectroscopy studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 and TiO2 added β-Ni(OH)2 electrodes in 6 M KOH electrolyte. Anodic(Epa) and cathodic(Epc)peak potentials are found to decrease after the addition of TiO 2 into β-Ni(OH)2 electrode material. Further,addition of TiO2 is found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. Compared with pure β-Ni(OH)2 lectrode,TiO2 added β-Ni(OH)2 electrode is found to exhibit higher proton diffusion coefficient(D) and lower charge transfer resistance. These findings suggest that the TiO2 added β-Ni(OH)2 electrode possess improved electrochemical properties and thus can be recognized as a promising candidate for the battery electrode applications.
基金financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.
文摘Organic coatings are widely used to control the corrosion of steel structure. The anticorrosive property of these coatings depends on their barrier properties, making a separation between the corrosive medium and the substrate. But unavoidable completely small pores, cracks and other defects in organic coatings may cause ions, water, gases, and other corrosive species penetrate and distribute in the coatings, causing accumulation and swelling of coatings, so leading to the degradation of coatings. In addition, water affects the permeation of oxygen and other corrosive medium, consequently the presence of such substances at coating-metal interface promotes corrosion of metal substrate. So the absorbability of the coatings to water may be one of the most important factors in undercoating corrosion. In recent years, electrochemical impedance spectroscopy (EIS) has been established and frequently used as a non-destructive testing method for assessing the performance of organic coatings, especially for the determination of the water content in organic coatings, since the capacitance of the coatings is sensitive to the penetration of water. So from EIS it can extract a wealth of information on the electrochemical corrosion of coated steels, especially, it can be utilized to assess organic coatings used under particular surroundings. The principle, methods and application of EIS on evaluating life-span and analyzing failure mechanism of organic coatings are also introduced briefly. Combining other analysis techniques such as XRD, SEM and FTIR with electrochemical technique, it will blaze a way in studying degradation mechanism of organic coatings and estimating their lifetime.
文摘For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and low density besides its ability to retain strength and stiffness at elevated temperatures. However NiAl intermetallic is too hard, brittle and exhibits very low ductility at room temperature being the reason because this material is not yet available for structural applications. In order to increase the ductility of the NiAl intermetallic compound, the addition of a third alloying element has been proved, nevertheless it is important to determine if such additions decrease or increase the hardness and the corrosion resistance of the alloy. So, the present investigation reports the corrosion performance of the NiAl intermetallic compound modified with Cu, emphasizing the EIS analysis and the relation between physical parameters and the modelling equations used in the Equivalent Electric Circuit. It was found that the addition of Cu promotes the formation of the γ’-Ni<sub>3</sub>Al phase in Cu contents greater than 15 at. %, in addition to a decrease in micro hardness and an increment in the I<sub>corr</sub> values. In this way, the electrochemical characterization evidenced a high corrosion resistance of these intermetallic alloys.
基金supported by National Key Research and Development Program of China(Funding Number:2019YFB1504605)。
文摘Electrochemical impedance spectroscopy(EIS)contributes to developing the fault diagnosis tools for fuel cells,which is of great significance in improving service life.The conventional impedance measurement techniques are limited to linear responses,failing to capture high-order harmonic responses.However,nonlinear electrochemical impedance analysis incorporates additional nonlinear information,enabling the resolution of such responses.This study proposes a novel multi-stage fault diagnosis method based on the nonlinear electrochemical impedance spectrum(NEIS).First,the impact of alternating current excitation amplitude on NEIS is analyzed.Then,a series of experiments are conducted to obtain NEIS data under various fault conditions,encompassing recoverable faults like flooding,drying,starvation,and their mixed faults,spanning different degrees of fault severity.Based on these experiments,both EIS and NEIS datasets are established,and principal component analysis is utilized to extract the main features,thereby reducing the dimensionality of the original data.Finally,a fault diagnosis model is constructed with the support vector machine(SVM)and random forest algorithms,with model hyperparameters optimized by a hybrid genetic particle swarm optimization(HGAPSO)algorithm.The results show that the diagnostic accuracy of NEIS is higher than that of traditional EIS,with the HGAPSO-SVM model achieving a 100%accurate diagnosis under the NEIS dateset and self-defined fault labels.