期刊文献+
共找到1,572篇文章
< 1 2 79 >
每页显示 20 50 100
Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones.PartⅠ:Initial Uncertainties 被引量:4
1
作者 Feifan ZHOU Munehiko YAMAGUCHI Xiaohao QIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第7期841-851,共11页
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made ... This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfaIling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required. 展开更多
关键词 tropical cyclone track forecast error diagnosis Global/Regional Assimilation and Prediction System initialuncertainty
下载PDF
ANALYSES OF ERRORS IN MEDIUM-TERM NUMERICAL FORECAST PRODUCTS FOR THE SUBTROPICAL HIGH 1998 被引量:1
2
作者 王兴荣 姚叶青 +3 位作者 尚瑜 陈晓平 程小泉 率爱梅 《Journal of Tropical Meteorology》 SCIE 2003年第1期105-112,共8页
By statistic and dynamic analyses, we have come to the following conclusions: (1) The ECMWF medium-term numerical forecast can forecast medium-term activity of subtropical high, and the accuracy rate of forecast canno... By statistic and dynamic analyses, we have come to the following conclusions: (1) The ECMWF medium-term numerical forecast can forecast medium-term activity of subtropical high, and the accuracy rate of forecast cannot have large improvement by translational corrections. (2) The important cause for the ECMWF medium-term numerical forecast to have errors in 1998 is that the astronomical tide is not included in the model. (3) Two indexes are found from which it can be judged that ECMWF medium-term numerical forecast will have errors if the astronomical tide is ignored in the model : ① When the 54.7?line under the moon of the nodical month astronomical singularities coincides with the trough-line of the subtropical jet flow from 50癊 to 150癊 on the 500 hPa level at 2000 L.T. of the same day, and is approximately vertical (α>60? with the isotherm, then the day 0 2 days after the appearance of the nodical month astronomical singularities is defined as the initial day. Then in three successive days after the initial day, ECMWF medium-term numerical forecast of the northern latitude of the 588 line at 120 癊 will have continuous errors as large as two latitudes (7/9). Otherwise, it won’t have continuous errors (13/13). ② Otherwise, if the 54.7 ?line is in the range of a low pressure between two high pressures, then there is a dispersive error on the day of the nodical month astronomical singularities (5/7). There is not any error (6/6) otherwise. 展开更多
关键词 ECMWF medium-term numerical forecast subtropical high error analysis astronomical tide analysis of dynamics
下载PDF
Customer Information Disclosure and Analyst Forecasts : Empirical Evidence from Analysts' Perspective 被引量:1
3
作者 Rui ZHAO Weisheng JIN 《Asian Agricultural Research》 2019年第2期32-37,共6页
Based on the company's disclosure of key customer information,the impact of corporate customer concentration on analyst forecast was studied,and we further studied the impact of detailed customer names on analyst ... Based on the company's disclosure of key customer information,the impact of corporate customer concentration on analyst forecast was studied,and we further studied the impact of detailed customer names on analyst forecasts. It is found that:(i) customer concentration significantly affects the accuracy of analyst forecasts. The higher the customer concentration is,the lower the accuracy of analyst forecasts is;(ii) Voluntary disclosure of customer names can provide incremental information to analysts and mitigate the negative impact of customer concentration on the accuracy of analyst forests;(iii) further research has found that the incremental information brought by the state-owned enterprises' disclosure of the customer names to analysts is more obvious; disclosure of customer names by companies with high environmental uncertainty is more likely to be of concern to analysts; and star analysts have a higher ability to interpret customer names than non-star analysts. 展开更多
关键词 analyst forecasts CUSTOMER information DISCLOSURE CUSTOMER concentration CORPORATE nature Environmental uncertainty
下载PDF
The Quality of Analysts' Cash Flow Forecasts in China 被引量:2
4
作者 Jun Yao Chenxing Meng 《中国会计与财务研究》 2014年第2期228-244,共17页
关键词 流量预测 现金流 中国 质量 测量问题 激励机制 回归测试 数据集中
下载PDF
The Relationship between Deterministic and Ensemble Mean Forecast Errors Revealed by Global and Local Attractor Radii
5
作者 Jie FENG Jianping LI +2 位作者 Jing ZHANG Deqiang LIU Ruiqiang DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第3期271-278,339,共9页
It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the rel... It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2^(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases. 展开更多
关键词 attractor radius ensemble forecasting ensemble mean forecast error saturation
下载PDF
Earnings disaggregation and analysts' forecasts
6
作者 Joshua G Rosette Yong-Chul Shin 《Journal of Modern Accounting and Auditing》 2010年第9期37-49,共13页
Accounting concepts dictate that separately disclosed components should contain separate useful information. This paper examines the relations between income statement components and analysts' earnings forecasts and ... Accounting concepts dictate that separately disclosed components should contain separate useful information. This paper examines the relations between income statement components and analysts' earnings forecasts and forecast errors. Regressions explaining earnings forecasts using earnings components provide a better fit than regression using just aggregate income to explain forecasts. We interpret this as consistent with the hypothesis that analysts use incremental information in components not available in aggregate income. However, additional tests based on predictability of forecast errors indicate that analysts do not incorporate all information available in components into earnings forecasts. In addition, this inefficiency appears to increase at longer forecast horizons. 展开更多
关键词 analysts' earnings forecasts earnings forecast errors earnings components earnings response coefficients
下载PDF
Theoretical explanations to security analysts' forecast bias
7
作者 ZHAO Xiao-yan 《Chinese Business Review》 2007年第5期1-4,共4页
As the representative of mature investors, security analysts' recommendations are guidance for most investors, However, a great deal of studies nearly draws the consistent conclusion, i.e. they are not as smart as we... As the representative of mature investors, security analysts' recommendations are guidance for most investors, However, a great deal of studies nearly draws the consistent conclusion, i.e. they are not as smart as we imagine, or the market doesn't trust their recommendations so much. The existence of optimistic bias in their recommendations has been supported by empirical data widely. Hence these make many papers to explore the reasons and try to give theoretical explanations. Based on prior researches, this paper mainly compares two theoretical models both based on mathematical methods. 展开更多
关键词 security analysts' forecast optimistic bias earning skewness
下载PDF
STUDY OF THE EFFECTS OF REDUCING SYSTEMATIC ERRORS ON MONTHLY REGIONAL CLIMATE DYNAMICAL FORECAST
8
作者 曾新民 席朝笠 《Journal of Tropical Meteorology》 SCIE 2009年第1期102-105,共4页
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo... A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast. 展开更多
关键词 climatology monthly regional climate dynamical forecast systematic errors
下载PDF
New European Union's Requirements and IFRS Practice Statement "Management Commentary": Does MD&A Disclosure Quality Affect Analysts' Forecasts?
9
作者 S. Pisano F. Alvino 《Journal of Modern Accounting and Auditing》 2015年第6期283-301,共19页
The Management Discussion and Analysis (MD&A) is a mandatory document under the European Union's (EU) law. In 2003, the EU issued Directive 2003/51/EC, which broadened the information that firms have to provide ... The Management Discussion and Analysis (MD&A) is a mandatory document under the European Union's (EU) law. In 2003, the EU issued Directive 2003/51/EC, which broadened the information that firms have to provide in their MD&A, and in 2010 the International Accounting Standards Board (IASB) issued the International Financial Reporting Standards (IFRS) Practice Statement "Management Commentary", a non-binding guidance for the presentation of this document. The aim of this paper is to examine the relationship between MD&A disclosure quality and properties of analysts' forecasts. In fact, although most studies found that financial analysts mainly refer to financial statement data in forecasting earnings, there are few researches highlighting the importance of MD&A disclosures for financial analysts. On this basis, Ramnath, Rock, and Shane (2008) called for researches in order to better understand the relationship between the information really used by analysts and their forecasts. To assess the quality of MD&A disclosures, we developed a multidimensional measure on the basis of the EU requirements and the IFRS Practice Statement, and then we regressed this variable on both forecast accuracy and dispersion. The findings show that our measure of MD&A disclosure quality is significantly and positively related to forecast accuracy. We conducted other analyses in order to better understand the previous relationship and we found that, if we analyze the different information contained in the MD&A statement, financial analysts consider useful accounting and financial data in forecasting earnings. These results enhance our understanding of the role of MD&A disclosures in the wide set of information that firms provide to financial statement users. 展开更多
关键词 Management Discussion and Analysis (MD&A) Directive 2003/51/EC Intemational FinancialReporting Standards (IFRS) Practice Statement "Management Commentary" disclosure quality analysts' forecasts
下载PDF
Extended Range(10–30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model 被引量:5
10
作者 XIA Zhiye CHEN Hongbin +1 位作者 XU Lisheng WANG Yongqian 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1583-1591,共9页
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin... Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data. 展开更多
关键词 nonlinear cross prediction error extended range forecasting phase space
下载PDF
Analysis on the Reason of Local Heavy Rainstorm Forecast Error in the Subtropical High Control 被引量:2
11
作者 LV Xiao-hua DAI Jin +1 位作者 WU Jin-hua LI Wen-ming 《Meteorological and Environmental Research》 CAS 2011年第2期13-17,共5页
[Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional gro... [Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional ground observation data, the upper air sounding data, T639, T213 and European Center (ECMWF) numerical prediction product data, GFS precipitation forecast product of U.S. National Center for Environmental Prediction, the weather situation, physical quantity field in a heavy rainstorm process which happened in the north of Shaoyang at night on August 5, 2010 were fully analyzed. Based on the numerical analysis forecast product data, the reason of heavy rainstorm forecast error in the subtropical high was comprehensively analyzed by using the comparison and analysis method of forecast and actual situation. [Result] The forecasters didn’t deeply and carefully analyze the weather situation. On the surface, 500 hPa was controlled by the subtropical high, but there was the weak shear line in 700 and 850 hPa. Moreover, they neglected the influences of weak cold air and easterlies wave. The subtropical high quickly weakened, and the system adjustment was too quick. The wind field variations in 850, 700 and 500 hPa which were forecasted by ECMWF had the big error with the actual situation. It was by east about 2 longitudes than the actual situation. In summer forecast, they only considered the intensity and position variations of 500 hPa subtropical high, and neglected the situation variations in the middle, low levels and on the ground. It was the most key element which caused the rainstorm forecast error in the subtropical high. The forecast error of numerical forecast products on the height field situation variation was big. The precipitation forecasts of Japan FSAS, U.S. National Center for Environmental Prediction GFS, T639 and T213 were all small. The humidity field forecast value of T639 was small. In the rainstorm forecast, the local rainstorm forecast index and method weren’t used in the forecast practice. In the precipitation forecast process, they only paid attention to the score prediction of station and didn’t value the non-site prediction. Some important physical quantity factors weren’t carefully studied. [Conclusion] The research provided the reference basis for the forecast and early warning of local heavy rainstorm. 展开更多
关键词 Heavy rainstorm Subtropical high forecast error Reason analysis China
下载PDF
Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model 被引量:1
12
作者 Runhua YANG Jing GUO Lars Peter RIISHФJGAARD 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第1期33-44,共12页
In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absenc... In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed. 展开更多
关键词 forecast error statistics estimation data analysis forecast error covariance model
下载PDF
Adaptive Error Curve Learning Ensemble Model for Improving Energy Consumption Forecasting 被引量:1
13
作者 Prince Waqas Khan Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2021年第11期1893-1913,共21页
Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptiv... Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models. 展开更多
关键词 Energy consumption meteorological features error curve learning ensemble model energy forecasting gradient boost catboost multilayer perceptron genetic algorithm
下载PDF
A Two-step Estimation Method of Troposphere Delay with Consideration of Mapping Function Errors 被引量:11
14
作者 Haopeng FAN Zhongmiao SUN +1 位作者 Liping ZHANG Xiaogang LIU 《Journal of Geodesy and Geoinformation Science》 2020年第1期76-84,共9页
Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably br... Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably bring non-ignorable errors to solutions. After analyzing the variation of mapping function errors with elevation angles based on several-year meteorological data, this paper constructed a model of this error and then proposed a two-step estimation method of troposphere delay with consideration of mapping function errors. The experimental results indicate that the method put forward by this paper could reduce the slant path delay residuals efficiently and improve the estimation accuracy of wet tropospheric delay to some extent. 展开更多
关键词 TROPOSPHERIC DELAY mapping function errors Very Long BASELINE Interferometry parameter weighted adjustment European CENTRE for Medium-Range Weather forecasts
下载PDF
Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data
15
作者 Seung-Woo LEE Dong-Kyou LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期758-774,共17页
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper di... Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated. 展开更多
关键词 3DVAR background error covariances retrieved satellite data assimilation ensemble forecasts.
下载PDF
Day-Ahead Probabilistic Load Flow Analysis Considering Wind Power Forecast Error Correlation
16
作者 Qiang Ding Chuancheng Zhang +4 位作者 Jingyang Zhou Sai Dai Dan Xu Zhiqiang Luo Chengwei Zhai 《Energy and Power Engineering》 2017年第4期292-299,共8页
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration... Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm. 展开更多
关键词 Wind Power Time Series Model forecast error Distribution forecast error CORRELATION PROBABILISTIC Load Flow Gram-Charlier Expansion
下载PDF
Partition of Forecast Error into Positional and Structural Components
17
作者 Isidora JANKOV Scott GREGORY +2 位作者 Sai RAVELA Zoltan TOTH Malaquías PEÑA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期1012-1019,共8页
Weather manifests in spatiotemporally coherent structures.Weather forecasts hence are affected by both positional and structural or amplitude errors.This has been long recognized by practicing forecasters(cf.,e.g.,Tro... Weather manifests in spatiotemporally coherent structures.Weather forecasts hence are affected by both positional and structural or amplitude errors.This has been long recognized by practicing forecasters(cf.,e.g.,Tropical Cyclone track and intensity errors).Despite the emergence in recent decades of various objective methods for the diagnosis of positional forecast errors,most routine verification or statistical post-processing methods implicitly assume that forecasts have no positional error.The Forecast Error Decomposition(FED)method proposed in this study uses the Field Alignment technique which aligns a gridded forecast with its verifying analysis field.The total error is then partitioned into three orthogonal components:(a)large scale positional,(b)large scale structural,and(c)small scale error variance.The use of FED is demonstrated over a month-long MSLP data set.As expected,positional errors are often characterized by dipole patterns related to the displacement of features,while structural errors appear with single extrema,indicative of magnitude problems.The most important result of this study is that over the test period,more than 50%of the total mean sea level pressure forecast error variance is associated with large scale positional error.The importance of positional error in forecasts of other variables and over different time periods remain to be explored. 展开更多
关键词 forecast error orthogonal decomposition positional STRUCTURAL
下载PDF
Short Term Forecasting Performances of Classical VAR and Sims-Zha Bayesian VAR Models for Time Series with Collinear Variables and Correlated Error Terms
18
作者 M. O. Adenomon V. A. Michael O. P. Evans 《Open Journal of Statistics》 2015年第7期742-753,共12页
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. ... Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered. 展开更多
关键词 Short term forecasting Vector Autoregressive (VAR) BAYESIAN VAR (BVAR) Sims-Zha Prior COLLINEARITY error Terms
下载PDF
A STUDY ON THE ENSEMBLE FORECAST REAL-TIME CORRECTION METHOD 被引量:4
19
作者 GUO Rong QI Liang-bo +1 位作者 GE Qian-qian WENG Yong-yuan 《Journal of Tropical Meteorology》 SCIE 2018年第1期42-48,共7页
Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin... Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h. 展开更多
关键词 typhoon path real-time correction ensemble forecast track errors
下载PDF
Thermal Error Modeling Method with the Jamming of Temperature-Sensitive Points'Volatility on CNC Machine Tools 被引量:2
20
作者 Enming MIAO Yi LIU +1 位作者 Jianguo XU Hui LIU 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期566-577,共12页
Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as t... Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools. 展开更多
关键词 CNC machine tool Thermal error Temperature-sensitive points forecasting robustnessUnivariate modeling
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部