The adoption of Internet of Things(IoT)sensing devices is growing rapidly due to their ability to provide realtime services.However,it is constrained by limited data storage and processing power.It offloads its massiv...The adoption of Internet of Things(IoT)sensing devices is growing rapidly due to their ability to provide realtime services.However,it is constrained by limited data storage and processing power.It offloads its massive data stream to edge devices and the cloud for adequate storage and processing.This further leads to the challenges of data outliers,data redundancies,and cloud resource load balancing that would affect the execution and outcome of data streams.This paper presents a review of existing analytics algorithms deployed on IoT-enabled edge cloud infrastructure that resolved the challenges of data outliers,data redundancies,and cloud resource load balancing.The review highlights the problems solved,the results,the weaknesses of the existing algorithms,and the physical and virtual cloud storage servers for resource load balancing.In addition,it discusses the adoption of network protocols that govern the interaction between the three-layer architecture of IoT sensing devices enabled edge cloud and its prevailing challenges.A total of 72 algorithms covering the categories of classification,regression,clustering,deep learning,and optimization have been reviewed.The classification approach has been widely adopted to solve the problem of redundant data,while clustering and optimization approaches are more used for outlier detection and cloud resource allocation.展开更多
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ...There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.展开更多
As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spin...As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spindle axis do not coincide with each other due to wheel settings,machining errors and so on.This could result in the generation of wheel runout,which may reduce the machining surface's quality.In this paper,combining this phenomenon,an analytic algorithm method for the multi-axis grinding process is introduced according to the envelope theory.After that,the accuracy of this method is verified.Two experiments are carried out on a 5-axis machining center.The artificial runout is set up and calculated utilizing the least square method.Finally,using the presented method,two examples with and without runout are introduced to illustrate the validation of the proposed model.The error due to the runout effect is also analyzed.展开更多
Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in moni...Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in monitoring crystallization or precipitation processes because the existence of solids could cause distortion of the spectra. This phenomenon, seen as unfavorable previously, is however an indication that NIR spectra contain rich information about both solids and liquids, giving the possibility of using the same instrument for multiple property characterization. In this study, transflectance NIR calibration data was obtained using solutions and slurries of varied solution concentration, particle size, solid concentration and temperature. The data was used to build calibration models for prediction of the multiple properties of both phases. Predictive models were developed for this challenging application using an approach that combines genetic algorithm (GA) and support vector machine (SVM). GA is used for wavelength selection and SVM for mode building. The new GA-SVM approach is shown to outperform other methods including GA-PLS (partial least squares) and traditional SVM. NIR is thus successfully applied to monitoring seeded and unseeded cooling crystallization processes of L-glutamic acid.展开更多
文摘The adoption of Internet of Things(IoT)sensing devices is growing rapidly due to their ability to provide realtime services.However,it is constrained by limited data storage and processing power.It offloads its massive data stream to edge devices and the cloud for adequate storage and processing.This further leads to the challenges of data outliers,data redundancies,and cloud resource load balancing that would affect the execution and outcome of data streams.This paper presents a review of existing analytics algorithms deployed on IoT-enabled edge cloud infrastructure that resolved the challenges of data outliers,data redundancies,and cloud resource load balancing.The review highlights the problems solved,the results,the weaknesses of the existing algorithms,and the physical and virtual cloud storage servers for resource load balancing.In addition,it discusses the adoption of network protocols that govern the interaction between the three-layer architecture of IoT sensing devices enabled edge cloud and its prevailing challenges.A total of 72 algorithms covering the categories of classification,regression,clustering,deep learning,and optimization have been reviewed.The classification approach has been widely adopted to solve the problem of redundant data,while clustering and optimization approaches are more used for outlier detection and cloud resource allocation.
文摘There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.
基金supported by the National Natural Science Foundation of China(No.51605147)National Science Fund for Distinguished Young Scholars of Henan Polytechnic University(J2019-2)Young Backbone Project of Henan Polytechnic University(No.2018XQG-05)。
文摘As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spindle axis do not coincide with each other due to wheel settings,machining errors and so on.This could result in the generation of wheel runout,which may reduce the machining surface's quality.In this paper,combining this phenomenon,an analytic algorithm method for the multi-axis grinding process is introduced according to the envelope theory.After that,the accuracy of this method is verified.Two experiments are carried out on a 5-axis machining center.The artificial runout is set up and calculated utilizing the least square method.Finally,using the presented method,two examples with and without runout are introduced to illustrate the validation of the proposed model.The error due to the runout effect is also analyzed.
基金UK Engineering and Physical Sciences Research Council for funding the research (EPSRCGrant Reference: EP/C001788/1)
文摘Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in monitoring crystallization or precipitation processes because the existence of solids could cause distortion of the spectra. This phenomenon, seen as unfavorable previously, is however an indication that NIR spectra contain rich information about both solids and liquids, giving the possibility of using the same instrument for multiple property characterization. In this study, transflectance NIR calibration data was obtained using solutions and slurries of varied solution concentration, particle size, solid concentration and temperature. The data was used to build calibration models for prediction of the multiple properties of both phases. Predictive models were developed for this challenging application using an approach that combines genetic algorithm (GA) and support vector machine (SVM). GA is used for wavelength selection and SVM for mode building. The new GA-SVM approach is shown to outperform other methods including GA-PLS (partial least squares) and traditional SVM. NIR is thus successfully applied to monitoring seeded and unseeded cooling crystallization processes of L-glutamic acid.