A simple characteristic equation solution strategy for deriving the fun- damental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtaine...A simple characteristic equation solution strategy for deriving the fun- damental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtained from the governing equations of 3D elasticity, the characteristic equation which the characteristic general solution vectors must satisfy is established. Then, by substitution of the characteristic general solution vectors, which satisfy various reduced characteristic equations, into various reduced ad- joint matrices of the differential operator matrix, the corresponding fundamental analyt- ical solutions for isotropic 3D elasticity, including Boussinesq-Galerkin (B-G) solutions, modified Papkovich-Neuber solutions proposed by Min-zhong WANG (P-N-W), and quasi HU Hai-chang solutions, can be obtained. Furthermore, the independence characters of various fundamental solutions in polynomial form are also discussed in detail. These works provide a basis for constructing complete and independent analytical trial func- tions used in numerical methods.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10872108 and10876100)the Program for New Century Excellent Talents in University (No. NCET-07-0477)the National Basic Research Programs of China (Nos. 2010CB731503 and 2010CB832701)
文摘A simple characteristic equation solution strategy for deriving the fun- damental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtained from the governing equations of 3D elasticity, the characteristic equation which the characteristic general solution vectors must satisfy is established. Then, by substitution of the characteristic general solution vectors, which satisfy various reduced characteristic equations, into various reduced ad- joint matrices of the differential operator matrix, the corresponding fundamental analyt- ical solutions for isotropic 3D elasticity, including Boussinesq-Galerkin (B-G) solutions, modified Papkovich-Neuber solutions proposed by Min-zhong WANG (P-N-W), and quasi HU Hai-chang solutions, can be obtained. Furthermore, the independence characters of various fundamental solutions in polynomial form are also discussed in detail. These works provide a basis for constructing complete and independent analytical trial func- tions used in numerical methods.