Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study o...Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.展开更多
Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil, but also by the characteristics of the installation line. The investigation on the previous predictio...Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil, but also by the characteristics of the installation line. The investigation on the previous prediction methods related to anchor positioning demonstrates that the prediction of the anchor position during dragging has inevitably introduced some key and unsubstantiated hypotheses and the applicability of these methods is limited. In the present study, the interactional system between the drag anchor and installation line is firstly introduced for the analysis of anchor positioning. Based on the two mechanical models for embedded lines and drag anchors, the positioning equations for drag anchors have been derived both for cohesive and noncohesive soils. Since the drag angle at the shackle is the most important parameter in the positioning equations, a novel analytical method that can predict both the variation and the exact value of the drag angle at the shackle is proposed. The analytical method for positioning drag anchors which combines the interactional system between the drag anchor and the installation line has provided a reasonable theoretic approach to investigate the anchor behaviors in soils. By comparing with the model flume experiments, the sensitivity, effectiveness and veracity of the positioning method are well verified.展开更多
Drag anchor is widely applied in offshore engineering for offshore mooring systems.The prediction of the invisible trajectory during its drag-in installation is challenging for anchor design in determining the anchor ...Drag anchor is widely applied in offshore engineering for offshore mooring systems.The prediction of the invisible trajectory during its drag-in installation is challenging for anchor design in determining the anchor final position for ensuring sufficient holding capacity.The yield envelope method based on deep anchor failure for kinematic analysis was proposed as a promising trajectory prediction method for drag anchor.However,there is a lack of analysis on the effects of the parameters applied in the kinematic analysis.The current work studies the effects of the yield envelope parameters,anchor line bearing capacity factor and the anchor/soil interface friction.It is found that the accuracy of the yield envelope parameters has large impact on the prediction results based on deep yield envelopes.Analyses of cases with smooth fluke predict deeper embedment depth than that from analyses of cases with rough fluke.The decrease of the capacity factor results in the increase of the anchor embedment depth,the anchor line load,the anchor chain angle and the stable value of the normalized horizontal load component for the same drag length,while the stable value of the normalized vertical load component decreases when the capacity factor decreases.This illustrates the importance in applying reasonable parameters and improving the method for more reliable prediction of the anchor trajectory.展开更多
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. ...Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.展开更多
Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system.For a semi-submersible platform with taut mooring...Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system.For a semi-submersible platform with taut mooring system under extreme environmental conditions,the typical mooring system failure includes anchor line breaking failure due to the broken anchor line,and the anchor dragging failure caused by the anchor failure in the seabed soil due to the shortage of the anchor bearing capacity.However,study on the mooring failure caused by anchor failure is rare.The current work investigates the effect of three failure modes of taut mooring system on dynamic response of a semi-submersible platform,including one line breaking failure,two lines breaking failure,and one line breaking with one line attached anchor dragging failure.The nonlinear polynomial mooring line model in AQWA was used with integrating the load and displacement curve from the anchor pulling study to characterize the anchor dragging behavior for mooring system failure caused by the anchor failure.The offsets of the platform and the tension of mooring lines were analyzed for mooring system failure with 100-year return period.It is found that the mooring failure of one line breaking with one line attached anchor dragging is a case between the other two mooring failures.The traditional mooring analysis considering only the damaged condition with one line breaking is not safe enough.And the simple way of mooring analysis of two lines breaking is too conservative for the costly offshore engineering.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant nos. 50639030 and 50979070) and the 863 Program of China (Grant no. 2006AA09Z348).
文摘Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2009CB219507)the National Natural Science Foundation of China(Grant Nos.50639030 and 50979070)the National Science and Technology Major Project of China(Grant Nos.2011ZX05056-002 and 2011ZX05026-004)
文摘Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil, but also by the characteristics of the installation line. The investigation on the previous prediction methods related to anchor positioning demonstrates that the prediction of the anchor position during dragging has inevitably introduced some key and unsubstantiated hypotheses and the applicability of these methods is limited. In the present study, the interactional system between the drag anchor and installation line is firstly introduced for the analysis of anchor positioning. Based on the two mechanical models for embedded lines and drag anchors, the positioning equations for drag anchors have been derived both for cohesive and noncohesive soils. Since the drag angle at the shackle is the most important parameter in the positioning equations, a novel analytical method that can predict both the variation and the exact value of the drag angle at the shackle is proposed. The analytical method for positioning drag anchors which combines the interactional system between the drag anchor and the installation line has provided a reasonable theoretic approach to investigate the anchor behaviors in soils. By comparing with the model flume experiments, the sensitivity, effectiveness and veracity of the positioning method are well verified.
基金the National Natural Science Foundation of China(Grant Nos.51809165 and 51761135012).
文摘Drag anchor is widely applied in offshore engineering for offshore mooring systems.The prediction of the invisible trajectory during its drag-in installation is challenging for anchor design in determining the anchor final position for ensuring sufficient holding capacity.The yield envelope method based on deep anchor failure for kinematic analysis was proposed as a promising trajectory prediction method for drag anchor.However,there is a lack of analysis on the effects of the parameters applied in the kinematic analysis.The current work studies the effects of the yield envelope parameters,anchor line bearing capacity factor and the anchor/soil interface friction.It is found that the accuracy of the yield envelope parameters has large impact on the prediction results based on deep yield envelopes.Analyses of cases with smooth fluke predict deeper embedment depth than that from analyses of cases with rough fluke.The decrease of the capacity factor results in the increase of the anchor embedment depth,the anchor line load,the anchor chain angle and the stable value of the normalized horizontal load component for the same drag length,while the stable value of the normalized vertical load component decreases when the capacity factor decreases.This illustrates the importance in applying reasonable parameters and improving the method for more reliable prediction of the anchor trajectory.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51890915,51490672,and51761135011)the Fundamental Research Funds for the Central Universities
文摘Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.
基金financially supported by the National Natural Science Foundation of China(Grant No.51809165).
文摘Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system.For a semi-submersible platform with taut mooring system under extreme environmental conditions,the typical mooring system failure includes anchor line breaking failure due to the broken anchor line,and the anchor dragging failure caused by the anchor failure in the seabed soil due to the shortage of the anchor bearing capacity.However,study on the mooring failure caused by anchor failure is rare.The current work investigates the effect of three failure modes of taut mooring system on dynamic response of a semi-submersible platform,including one line breaking failure,two lines breaking failure,and one line breaking with one line attached anchor dragging failure.The nonlinear polynomial mooring line model in AQWA was used with integrating the load and displacement curve from the anchor pulling study to characterize the anchor dragging behavior for mooring system failure caused by the anchor failure.The offsets of the platform and the tension of mooring lines were analyzed for mooring system failure with 100-year return period.It is found that the mooring failure of one line breaking with one line attached anchor dragging is a case between the other two mooring failures.The traditional mooring analysis considering only the damaged condition with one line breaking is not safe enough.And the simple way of mooring analysis of two lines breaking is too conservative for the costly offshore engineering.