期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Spatial structural characteristics of the Deda ancient landslide in the eastern Tibetan Plateau:Insights from Audio-frequency Magnetotellurics and the Microtremor Survey Method
1
作者 Zhen-dong Qiu Chang-bao Guo +5 位作者 Yi-ying Zhang Zhi-hua Yang Rui-an Wu Yi-qiu Yan Wen-kai Chen Feng Jin 《China Geology》 CAS CSCD 2024年第2期188-202,共15页
It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the lan... It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau. 展开更多
关键词 ancient landslide Remote sensing Audio-frequency Magnetotellurics(AMT) Microtremor Survey Method(MSM) Geological drilling engineering Spatial structure Tibetan Plateau Geological hazard survey engineering
下载PDF
Development characteristics and failure modes of reactivated ancient landslides in the Sichuan–Tibet transportation corridor,China
2
作者 WU Rui-an ZHANG Yong-shuang +5 位作者 GUO Chang-bao REN San-shao YAO Xin LIU Xiao-yi YANG Zhi-hua DU Guo-liang 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3596-3613,共18页
The risk of reactivated ancient landslides in the Sichuan–Tibet transportation corridor in China is significantly increasing,primarily driven by the intensification of engineering activities and the increased frequen... The risk of reactivated ancient landslides in the Sichuan–Tibet transportation corridor in China is significantly increasing,primarily driven by the intensification of engineering activities and the increased frequency of extreme weather events.This escalation has resulted in a considerable number of fatalities and extensive damage to critical engineering infrastructure.However,the factors contributing to the reactivation and modes of destruction of ancient landslides remain unknown.Therefore,it is imperative to systematically analyze the developmental characteristics and failure modes of reactivated ancient landslides to effectively mitigate disaster risks.Based on a combination of data collection,remote sensing interpretation,and field investigations,we delineated the developmental attributes of typical ancient landslides within the study area.These attributes encompass morphological and topographic aspects,material composition,and spatial structure of ancient landslides.Subsequently,we identified the key triggers for the reactivation of ancient landslides,including water infiltration,reservoir hydrodynamics,slope erosion,and excavation,by analyzing representative cases in the study area.Reactivation of ancient landslides is sometimes the result of the cumulative effects of multiple predisposing factors.Furthermore,our investigations revealed that the reactivation of these ancient landslides primarily led to local failures.However,over extended periods of dynamic action,the entire zone may experience gradual creep.We categorized the reactivation modes of ancient landslides into three distinct types based on the reactivation sequences:progressive retreat,backward thrusting,and forward pulling–backward thrusting.This study is of great significance for us to identify ancient landslides,deepen our understanding of the failure modes and risks of reactivated ancient landslides on the eastern margin of the Tibetan Plateau,and formulate effective disaster prevention and mitigation measures. 展开更多
关键词 ancient landslide Reactivation characteristic Triggering factor Failure mode Sichuan-Tibet transportation corridor Eastern Tibetan Plateau
下载PDF
Characteristics and Formation Mechanism of Giant Long-Runout Landslide: A Case Study of the Gamisi Ancient Landslide in the Upper Minjiang River, China 被引量:7
3
作者 GUO Changbao WU Ruian +3 位作者 ZHANG Yongshuang REN Sanshao YANG Zhihua LI Xue 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期1113-1124,共12页
The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geome... The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards.Based on the analysis of remote sensing interpretations,geological field surveys,geophysical prospecting and geological dating results,this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County,Sichuan Province,and investigates its geological age and formation mechanism.This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP.The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km,with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area.The landslide movement was characterized by a high speed and long runout.During the sliding process,the landslide body eroded and dammed the ancient Minjiang River valley.The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area.Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick.After the dam broke,the Minjiang River was migrated to the current channel at the leading edge of the landslide.The Gamisi ancient landslide was greatly affected by the regional crustal uplift,topography,geomorphology and paleoclimatic change.The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured,thus providing a lithological foundation for landslide occurrence.Intense tectonic activity along the Minjiang Fault,which runs through the middle and trailing parts of the Gamisi ancient landslide,may have been the main factor inducing landsliding.Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation. 展开更多
关键词 Tibetan plateau ancient landslide Gamisi long runout formation mechanism
下载PDF
Formation and reactivation mechanisms of large-scale ancient landslides in the Longwu River basin in the northeast Tibetan Plateau, China 被引量:2
4
作者 TIAN Jing-jing LI Tian-tao +4 位作者 PEI Xiang-jun DING Feng SUN Hao XIE Xian-gang GUO Jian 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1558-1575,共18页
The northeastern Tibetan Plateau exhibits steep topography and strong internal or external dynamic geological effect and is frequently subjected to strong earthquakes and heavy rainfall. The geological evolution has r... The northeastern Tibetan Plateau exhibits steep topography and strong internal or external dynamic geological effect and is frequently subjected to strong earthquakes and heavy rainfall. The geological evolution has resulted in a wide distribution of ancient landslides, which has become a hotspot for studying ancient landslide formation and reactivation. In recent decades, several ancient landslides on both banks of the Longwu River, Qinghai Province, China were reactivated, causing serious economic losses and casualties. This study conducted remote sensing interpretation and ground surveys on these ancient landslides. Totally 59 ancient landslides were identified, and the formation mechanism, evolution process, and resurrection mechanism of the Longwu Xishan No.2 ancient landslide were analyzed by means of a detailed field geological survey, drilling, and series of experimental tests such as the particle size distribution test, the Xray diffraction test and the mechanical properties test. The results show that the formation of these ancient landslides is closely associated with the uplift of the Tibetan Plateau and the erosion of the Longwu River. Firstly, the intermittent uplift of the Tibetan Plateau lead to the diversion and downcutting of the Longwu River basin, which forms the alternate slope topography with steep and slow slopes, thereby providing favourable topography and slope structure conditions for the formation of landslides. Secondly, 34.5% clay-mineral content in the Neoproterozoic mudstone with 32.7% particle size less than 0.005 mm, and the corrosion and softening effects of the Neogene mudstone with high clay mineral content under the erosion of water provides favourable material conditions for the formation of landslides. Thirdly, rainfall and human activities are the primary triggering factors for the revival of this ancient landslide group. It is revealed that the evolution process of the ancient landslides on both banks of the Longwu River can be divided into five stages namely tectonic rapid uplift slope formation, river erosion creep-sliding deformation, slope instability critical status, landslide failure-movement-accumulation, and slope reactivation under rainfall erosion and engineering excavation. 展开更多
关键词 Remote sensing interpretation Tectonic movement ancient landslide Reactivation mechanism Formation process Tibetan Plateau
下载PDF
Artificial Neural Network Model for Discrimination of Stability of Ancient Landslide in Impounding Area of Three Gorges Project, China
5
作者 Zhou Pinggen China Institute of Geo environment Monitoring, Beijing 100081 《Journal of China University of Geosciences》 SCIE CSCD 2003年第2期161-165,共5页
The factors of geomorphology, geological setting, effect of ground water and environment dynamic factors (e.g. rainfall and artificial water recharge) should be integrated in the discrimination of the stability of the... The factors of geomorphology, geological setting, effect of ground water and environment dynamic factors (e.g. rainfall and artificial water recharge) should be integrated in the discrimination of the stability of the ancient landslide. As the criterion of landslide stability has been studied, the artificial neural network model was then applied to discriminate the stability of the ancient landslide in the impounding area of the Three Gorges project on the Yangtze River, China. The model has the property of self adaptive identifying and integrating complex qualitative factors and quantitative factors. The results of the artificial neural network model are coincided well with what were gained by classical limit equilibrium analysis (the Bishop method and Janbu method) and by other comprehensive discrimination methods. 展开更多
关键词 ancient landslide STABILITY artificial neural network model the Three Gorges.
下载PDF
Reservoir Regulation for Control of an Ancient Landslide Reactivated by Water Level Fluctuations in Heishui River,China 被引量:4
6
作者 Jian Guo Mo Xu +3 位作者 Qiang Zhang Xianxuan Xiao Shishu Zhang Shaoming He 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1058-1067,共10页
Due to the complex geological processes of Qinghai-Tibet Plateau,numerous deposits,especially the large-scale ancient landslide deposits,are characteristic features of the valleys incised in southwestern China.Intense... Due to the complex geological processes of Qinghai-Tibet Plateau,numerous deposits,especially the large-scale ancient landslide deposits,are characteristic features of the valleys incised in southwestern China.Intense water level fluctuations since 2011 in Maoergai Reservoir,China,registered the reactivation of Xierguazi ancient landslide,and presented a significant risk to neighboring facilities.Based on detailed field survey and drilling exploration,the landslide was divided into Zone A and Zone B,and other characterizations of landslide were studied as well.To precisely measure the extent of landslide displacement during filling and drawdown stage,surface displacement monitoring system was deployed on the landslide.The monitoring analyses data reveal that reservoir fluctuation is the dominant factor influencing landslide displacement,especially during drawdown stage.Moreover,a future sliding is anticipated in Zone A,while a creep had already existed in Zone B.A reservoir regulation was then established using the lead-lag correlation between reservoir fluctuation and landslide displacement and landslide stability analysis.In the end,the follow-up deformation monitoring demonstrates that the reservoir regulation controlled the landslide effectively.Landslide control by reservoir regulation in Maoergai can serve as a case study for other settlements involved in similar construction activities. 展开更多
关键词 ancient landslide REACTIVATION reservoir regulation displacement monitoring correlation analysis
原文传递
Characteristics and failure mechanism of an ancient earthquake-induced landslide with an extremely wide distribution area 被引量:2
7
作者 HUANG Chao LI Yu-sheng +2 位作者 YI Shu-jian LIU Kai WU Chun-hao 《Journal of Mountain Science》 SCIE CSCD 2018年第2期380-393,共14页
The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of... The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of 19 km2 with a maximum width of 5-5 km and an estimated residual volume of 3 × 108 ma. The objectives of this study were to identify the characteristics and failure mechanism of this landslide. In this study, based on field investigations, aerial photography, and profile surveys, the boundary, lithology, structure of the strata, and characteristics of the landslide deposits were determined. A gently angled weak interlayer consisting of shale was the main factor contributing to the occurrence of the Lamuajue landslide. The deposition area can be divided into three zones: zone A is an avalanche deposition area mainly composed of blocks, fragments, and debris with diameters ranging from o.i m to 3 m; zone B is a residual integrated rock mass deposition area with large blocks, boulders and "fake bedrock"; and zone C is a deposition zone of limestone blocks and fragments. Three types of failure mechanism were analyzed and combined to explain the Lamuajue landslide based on the features of the accumulation area. First, a shattering-sliding mechanism caused by earthquakes in zone A. Second, a sliding mechanism along the weak intercalation caused by gravity and water in zone B. Third, a shattering-ejection mechanism generated by earthquakes in zone C. The results provide a distinctive case for the study of gigantic landslides induced by earthquakes, which is very important for understanding and assessing ancient earthquakeinduced landslides. 展开更多
关键词 Earthquake-induced landslide Lamuajue landslide ancient landslide Geologicalfeature Failure mechanism
下载PDF
Evaluation of the treatment effect of rear slope cutting on hydrodynamic pressure landslides:A case study
8
作者 WANG Li HUANG Jun-jie +4 位作者 CHEN Yong WANG Shi-mei FAN Zhi-hong GUO Fei LI Xiao-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1968-1983,共16页
After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydr... After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydrodynamic pressure landslide.The management department conducted slope cutting treatments from 2018 to 2019.To evaluate the treatment effect of rear slope cutting,this study analyzed the data of the surface deformation survey and field monitoring over the past 20 years and the characteristics of the reservoir water-triggered Baishuihe landslide deformation,and calculated the seepage field,displacement field,and stability coefficient before and after landslide treatment.The results showed that the deformation of the Baishuihe landslide was primarily related to a decrease in the reservoir water level.Owing to the poor permeability of the landslide soil,the decrease in the reservoir water level produced a seepage force pointing to the outside of the landslide body,leading to the step deformation of the landslide displacement.The landslide was treated by rear slope cutting,and the“step”deformation of the landslide disappeared after treatment.The hydrodynamic pressure caused by the change in reservoir water after cutting the slope did not disappear.However,as the slope cutting greatly reduced the overall sliding force of the landslide,its stability was greatly improved.Notably,high stability can still be ensured under extreme rainfall after treatment.Slope cutting is effective for treating hydrodynamic pressure landslides.This study can provide effective technical support for the treatment of reservoir landslides. 展开更多
关键词 Hydrodynamic pressure landslide Three Gorges Reservoir Slope cutting Load reduction landslide monitoring ancient landslides Reservoir water level fluctuation
下载PDF
Field investigations and numerical modeling of a giant landslide in the region of Eastern Himalayan Syntaxis:Jiaobunong landslide
9
作者 DU Guo-liang ZHANG Yong-shuang +2 位作者 YAO Xin YANG Zhi-hua YUAN Ying 《Journal of Mountain Science》 SCIE CSCD 2021年第12期3230-3246,共17页
Eastern Himalayan Syntaxis(EHS)is a tectonically active region that undergoes continuous geomorphic changes.Large landslides are predominant in this region.A giant landslide called Jiaobunong landslide on the northwes... Eastern Himalayan Syntaxis(EHS)is a tectonically active region that undergoes continuous geomorphic changes.Large landslides are predominant in this region.A giant landslide called Jiaobunong landslide on the northwestern flank of the EHS were studied and simulated to investigate the formation mechanism,evolutionary process,and failure mechanism of the landside,so that we could better understand the large complex ancient landslides in this region.Field investigation,geological background analyses,and numerical modeling were conducted to reveal the natural and seismic characteristics,as well as dynamic process of the landslide.The results show that the Jiaobunong landslide was the result of long-term geological and geomorphic evolution.Uplift,river incision,weathering,fault creep,glaciation,and earthquakes play key roles in the formation of landslides.Given the huge landslide volume,strong seismicity of the study area,proximity to an active fault,and the need for extra forces to induce landsliding,the Jiaobunong landslide was triggered by a paleo-earthquake.Using numerical simulation based on the discrete element method,the slope dynamic response of the earthquake as well as the mass movement and accumulation process was reproduced.Simulation results showed that the landslide movement experienced four stages:initiation phase(0-5 s),acceleration phase(5-35 s),deceleration phase(35-95 s),and the compaction and self-stabilization stage(after 95 s).The rock mass was disintegrated and experienced strong collisions during the movement.The dammed lake gradually disappeared because of long-term river incision by the overtopping river water.These processes play a vital role in the evolution of landforms in the region of EHS. 展开更多
关键词 Eastern Himalayan syntaxis ancient landslide Formation mechanism Evolution process Tibetan Plateau
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部