To investigate the influence of the bedding angle,β,on the mechanical properties and rockburst proneness,uniaxial compression tests were conducted using cylindrical phyllite specimens with different bedding angles.Ac...To investigate the influence of the bedding angle,β,on the mechanical properties and rockburst proneness,uniaxial compression tests were conducted using cylindrical phyllite specimens with different bedding angles.According to the results,the peak stress,peak strain,cumulative acoustic emission counts,and potential energy of the elastic strain exhibited a U-shaped change trend.With an increase in β from 0°to 90°,the failure mode transformed from tensile splitting failure along the bedding plane to shear slip failure along the weak bedding plane.Finally,the failure mode evolved into a tensile splitting failure across the bedding plane.When β=15°,30°,and 45°,the phyllite specimens exhibited strong,slight,and moderate rockburst proneness,with strong,slight,and moderate shear slip rockbursts,respectively.When β=0°,60°,75°,and 90°,the phyllite specimens had extremely strong rockburst proneness,and an extremely strong strain rockburst occurred.展开更多
The objective of this paper is to investigate the effects of initial particle gradation and rock content on the crushing behavior(i.e.grain size before and after crushing) of weathered phyllite fills.Compaction tests ...The objective of this paper is to investigate the effects of initial particle gradation and rock content on the crushing behavior(i.e.grain size before and after crushing) of weathered phyllite fills.Compaction tests were conducted on weathered phyllite fills with rock contents of 35%,45%,55%,65% and 75%(by weight).First,the particle size distributions(PSDs) were observed before and after compaction,and then the particle breakage of weathered phyllite fills was analyzed by fractal dimension.Relative fractal dimension was proposed to evaluate the effects of initial rock content and initial gradation on the particle breakage.It was found that the fractal dimension method can well characterize the crushing behaviors of the weathered phyllite fills.The finer the fills were,the more they were compacted.That is,after the first compaction,the relative fractal dimension of the weathered phyllite fills increased as the rock content increased,reaching the values of 0.013,0.016,0.024,0.037 and 0.08,respectively.After the second compaction,these relative fractal dimension values,dominated by the initial particle gradation,became 0.059,0.072,0.052,0.095 and 0.118,respectively.In conclusion,the weathered phyllite fills with 55% rock content exhibited the least breakage and were most suitable for filling the subgrade.Findings in this paper will provide significant guidance for the construction of weathered phyllite filling subgrade in future projects.展开更多
Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable...Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill.To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time,it was proposed to blend the CWP soil with red clay to improve their basic characteristics.A series of swell index tests and dry-wet cycle tests of the blended soils have been carried out at varying blending ratios,compaction coefficients and moisture contents.The test results show that the free swell index of the blended soil decreases with the increase of red clay,moisture content and compaction coefficient,respectively.The fissure density of the blended soil first decreases and then increases with the blending ratio,with the lowest being zero when the blending ratio is ranging from 20%to 40%.Through particle microscopic analysis and elemental composition analysis,it is found that the neutralization effect,the dilution effect of swell minerals,and the partition effect of coarse particles play an important role in restraining expansion and shrinkage deformation of the blended soil.Based on the liquid limit requirement of Chinese Railway Design Code(TB 10001-2016),the optimal blending ratio of red clay has been proposed to be 50%.Compared with the CWP soil,the free load swell index of the blended soil is reduced by 45.0%and the fissure density is reduced by 99.3%compared with that of red clay.Therefore,it is feasible to improve the CWP soil by blending it with red clay at an optimal ratio of 50%by using the neutralization effect of the expansion of CWP and shrinkage of red clay.展开更多
Although the study of TM(Thermo Mechanics),HM(Hydraulic-Mechanics) and THM(Thermo-Hydraulic-Mechanics) coupling under a loading test have been under development,rock failure analysis under THM coupling and unloading i...Although the study of TM(Thermo Mechanics),HM(Hydraulic-Mechanics) and THM(Thermo-Hydraulic-Mechanics) coupling under a loading test have been under development,rock failure analysis under THM coupling and unloading is an emerging topic.Based on a high temperature triaxial unloading seep test for phyllite,this paper discusses the deformation and failure mechanism of phyllites under the "H M,T→H,T→M" incomplete coupling model with unloading conditions.The results indicate that the elastic modulus and initial permeability decrease and the Poisson's ratio increases with increasing temperature;the elastic modulus decreases and the Poisson's ratio and initial permeability increase with increasing water pressure.During the unloading process,rock penetrability is small at the initial elastic deformation phase,but the penetrability increases near the end of the elastic deformation phase;mechanisms involving temperature and water pressure affect penetrability differently.Phyllite failure occurs from the initial thermal damage of the rock materials,splitting and softening(which is caused by pore water pressure),and the pressure difference which is formed from the loading axial pressure and unloading confining pressure.The phyllite failure mechanism is a transtensional(tension-shearing) failure.展开更多
Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of ...Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of red clay or cement for CWP satisfies the subgrade requirements for ordinary railway,but cannot meet the requirements of immediate strength and long-term post-construction settlement of high-speed railway at the same time.A series of experimental investigations were undertaken for the blended CWP soils,with three additives used.The first additive was red clay,the second was cement and the third was a combination of both red clay and cement at various portions.Results of consolidation test and shear strength test carried out for the treated CWP soils show that:1)The effect of cement on improving the compression modulus of CWP is much better than that of red clay;2)The settlement of an embankment of 10 m high formed by blended soil of CWP with 3%cement can be controlled within 15 mm,while the settlement will be 25.15 mm for the same embankment of blended soil of CWP with 40%red clay;3)The shear strength and ultimate bearing capacity of CWP improved by red clay are much better than those of 5%cement;4)The ultimate bearing capacity of CWP improved by 40%red clay is 3.42 times of that by 3%cement and 2.95 times by 5%cement.Furthermore,the bearing capacity of CWP when improved by red clay can meet railway subgrade requirements immediately after compaction,while cement improved CWP needs a curing time of 1 day or longer.This is an impediment to rapid construction process.The improvement mechanism of red clay is mainly filling effect and grading improvement effect,while the improvement mechanism of cement is mainly hardening reaction,which produces high strength material to cement.It is found that 40%red clay and 3%cement treated CWP,which is considered to be optimum,can meet the subgrade requirements of both immediate bearing capacity and long-term post-construction settlement for the high-speed railway.展开更多
The Al2O3 -SiC-C bricks for iron ladles were pre-pared asing bauxite, fused corundum,pyrophyllite, SiC powder and flake graphite as main starting materials, and phenolic resin as binder. The effect of pyroph,yllite pa...The Al2O3 -SiC-C bricks for iron ladles were pre-pared asing bauxite, fused corundum,pyrophyllite, SiC powder and flake graphite as main starting materials, and phenolic resin as binder. The effect of pyroph,yllite particle size on permanent change in dimensions, cold crushing strength, oxidation resistance, and corrosion resistance of Al2O3 - SiC - C bricks was investigated. The results show that with the decrease of the pyrophyllite particle size, the permanent change in dimensions of Al2O3 - SiC - C bricks decreases, cold crushing strength increases, the oxidation resistance at 1400 ℃ increases, and the corrosion resistance at 1500℃ decreases.展开更多
It is presented the results obtained of a multivariate statistical analysis concerning the chemical and phase composition, as a characterization purpose, carried out with 52 rock phyllite samples selected from the pro...It is presented the results obtained of a multivariate statistical analysis concerning the chemical and phase composition, as a characterization purpose, carried out with 52 rock phyllite samples selected from the provinces of Almería and Granada (SE Spain). Chemical analysis was performed by X-ray fluorescence (XRF). Crystalline phase analysis was performed by X-ray powder diffraction (XRD) and the mineralogical composition was then deduced. Quantification of weight loss (100? and 1000?C) was carried out by thermal analysis. The aims of this investigation were to analyze and compare the chemical and mineralogical composition of all these samples and to find similarities and differences between them to allow a classification. Several correlations between results of the characterization techniques have been also investigated. All the data have been processed using the multivariate statistical analysis method. The XRF macro-elements (10) and microelements (39) data generate one macrogroup with two new subgroups (1 and 2), and an isolated sample. In subgroup 1 of macroelements, a positive correlation was found between XRF results and geographic location characterized by lower MgO content, which is associated to its geological origins. When multivariate statistical analysis is applied to results obtained by XRD, two groups appear: the first one with a sample with zero percentage of iron oxide and the second one with the rest of the samples, which is classified in two groups. A correlation is observed between the alkaline content (XRF) and illite (XRD), CaO and MgO with dolomite and indirectly between the weight loss after heating at 1000?C and the contents of phase minerals that lose structural water (illite + chlorite) or carbon dioxide (dolomite). The present investigation has interest and implications for geochemistry and analytical chemistry concerning earth rocks and silicate raw materials.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51904335,11972378,41630642)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2019zzts310).
文摘To investigate the influence of the bedding angle,β,on the mechanical properties and rockburst proneness,uniaxial compression tests were conducted using cylindrical phyllite specimens with different bedding angles.According to the results,the peak stress,peak strain,cumulative acoustic emission counts,and potential energy of the elastic strain exhibited a U-shaped change trend.With an increase in β from 0°to 90°,the failure mode transformed from tensile splitting failure along the bedding plane to shear slip failure along the weak bedding plane.Finally,the failure mode evolved into a tensile splitting failure across the bedding plane.When β=15°,30°,and 45°,the phyllite specimens exhibited strong,slight,and moderate rockburst proneness,with strong,slight,and moderate shear slip rockbursts,respectively.When β=0°,60°,75°,and 90°,the phyllite specimens had extremely strong rockburst proneness,and an extremely strong strain rockburst occurred.
基金supported by the National Natural Science Foundation of China(Grant Nos.51378072 and 51878064)the Special Fund for Basic Scientific Research of the Central College of Chang’an University(Grant No.300102218408)the financial support provided by the China Association of Science and Technology(Grant No.2017CASTQNJL048)for visiting the University of Alberta。
文摘The objective of this paper is to investigate the effects of initial particle gradation and rock content on the crushing behavior(i.e.grain size before and after crushing) of weathered phyllite fills.Compaction tests were conducted on weathered phyllite fills with rock contents of 35%,45%,55%,65% and 75%(by weight).First,the particle size distributions(PSDs) were observed before and after compaction,and then the particle breakage of weathered phyllite fills was analyzed by fractal dimension.Relative fractal dimension was proposed to evaluate the effects of initial rock content and initial gradation on the particle breakage.It was found that the fractal dimension method can well characterize the crushing behaviors of the weathered phyllite fills.The finer the fills were,the more they were compacted.That is,after the first compaction,the relative fractal dimension of the weathered phyllite fills increased as the rock content increased,reaching the values of 0.013,0.016,0.024,0.037 and 0.08,respectively.After the second compaction,these relative fractal dimension values,dominated by the initial particle gradation,became 0.059,0.072,0.052,0.095 and 0.118,respectively.In conclusion,the weathered phyllite fills with 55% rock content exhibited the least breakage and were most suitable for filling the subgrade.Findings in this paper will provide significant guidance for the construction of weathered phyllite filling subgrade in future projects.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52068027,51668018,51768021).
文摘Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill.To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time,it was proposed to blend the CWP soil with red clay to improve their basic characteristics.A series of swell index tests and dry-wet cycle tests of the blended soils have been carried out at varying blending ratios,compaction coefficients and moisture contents.The test results show that the free swell index of the blended soil decreases with the increase of red clay,moisture content and compaction coefficient,respectively.The fissure density of the blended soil first decreases and then increases with the blending ratio,with the lowest being zero when the blending ratio is ranging from 20%to 40%.Through particle microscopic analysis and elemental composition analysis,it is found that the neutralization effect,the dilution effect of swell minerals,and the partition effect of coarse particles play an important role in restraining expansion and shrinkage deformation of the blended soil.Based on the liquid limit requirement of Chinese Railway Design Code(TB 10001-2016),the optimal blending ratio of red clay has been proposed to be 50%.Compared with the CWP soil,the free load swell index of the blended soil is reduced by 45.0%and the fissure density is reduced by 99.3%compared with that of red clay.Therefore,it is feasible to improve the CWP soil by blending it with red clay at an optimal ratio of 50%by using the neutralization effect of the expansion of CWP and shrinkage of red clay.
基金supported by National Natural Science Foundation of China (Grant No. 41102189,No. 41002110 and No. 41230635)Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No. SKLGP2009Z002,No. SKLGP2009Z012)Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20105122110008)
文摘Although the study of TM(Thermo Mechanics),HM(Hydraulic-Mechanics) and THM(Thermo-Hydraulic-Mechanics) coupling under a loading test have been under development,rock failure analysis under THM coupling and unloading is an emerging topic.Based on a high temperature triaxial unloading seep test for phyllite,this paper discusses the deformation and failure mechanism of phyllites under the "H M,T→H,T→M" incomplete coupling model with unloading conditions.The results indicate that the elastic modulus and initial permeability decrease and the Poisson's ratio increases with increasing temperature;the elastic modulus decreases and the Poisson's ratio and initial permeability increase with increasing water pressure.During the unloading process,rock penetrability is small at the initial elastic deformation phase,but the penetrability increases near the end of the elastic deformation phase;mechanisms involving temperature and water pressure affect penetrability differently.Phyllite failure occurs from the initial thermal damage of the rock materials,splitting and softening(which is caused by pore water pressure),and the pressure difference which is formed from the loading axial pressure and unloading confining pressure.The phyllite failure mechanism is a transtensional(tension-shearing) failure.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52068027,51668018,51768021).
文摘Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of red clay or cement for CWP satisfies the subgrade requirements for ordinary railway,but cannot meet the requirements of immediate strength and long-term post-construction settlement of high-speed railway at the same time.A series of experimental investigations were undertaken for the blended CWP soils,with three additives used.The first additive was red clay,the second was cement and the third was a combination of both red clay and cement at various portions.Results of consolidation test and shear strength test carried out for the treated CWP soils show that:1)The effect of cement on improving the compression modulus of CWP is much better than that of red clay;2)The settlement of an embankment of 10 m high formed by blended soil of CWP with 3%cement can be controlled within 15 mm,while the settlement will be 25.15 mm for the same embankment of blended soil of CWP with 40%red clay;3)The shear strength and ultimate bearing capacity of CWP improved by red clay are much better than those of 5%cement;4)The ultimate bearing capacity of CWP improved by 40%red clay is 3.42 times of that by 3%cement and 2.95 times by 5%cement.Furthermore,the bearing capacity of CWP when improved by red clay can meet railway subgrade requirements immediately after compaction,while cement improved CWP needs a curing time of 1 day or longer.This is an impediment to rapid construction process.The improvement mechanism of red clay is mainly filling effect and grading improvement effect,while the improvement mechanism of cement is mainly hardening reaction,which produces high strength material to cement.It is found that 40%red clay and 3%cement treated CWP,which is considered to be optimum,can meet the subgrade requirements of both immediate bearing capacity and long-term post-construction settlement for the high-speed railway.
文摘The Al2O3 -SiC-C bricks for iron ladles were pre-pared asing bauxite, fused corundum,pyrophyllite, SiC powder and flake graphite as main starting materials, and phenolic resin as binder. The effect of pyroph,yllite particle size on permanent change in dimensions, cold crushing strength, oxidation resistance, and corrosion resistance of Al2O3 - SiC - C bricks was investigated. The results show that with the decrease of the pyrophyllite particle size, the permanent change in dimensions of Al2O3 - SiC - C bricks decreases, cold crushing strength increases, the oxidation resistance at 1400 ℃ increases, and the corrosion resistance at 1500℃ decreases.
文摘It is presented the results obtained of a multivariate statistical analysis concerning the chemical and phase composition, as a characterization purpose, carried out with 52 rock phyllite samples selected from the provinces of Almería and Granada (SE Spain). Chemical analysis was performed by X-ray fluorescence (XRF). Crystalline phase analysis was performed by X-ray powder diffraction (XRD) and the mineralogical composition was then deduced. Quantification of weight loss (100? and 1000?C) was carried out by thermal analysis. The aims of this investigation were to analyze and compare the chemical and mineralogical composition of all these samples and to find similarities and differences between them to allow a classification. Several correlations between results of the characterization techniques have been also investigated. All the data have been processed using the multivariate statistical analysis method. The XRF macro-elements (10) and microelements (39) data generate one macrogroup with two new subgroups (1 and 2), and an isolated sample. In subgroup 1 of macroelements, a positive correlation was found between XRF results and geographic location characterized by lower MgO content, which is associated to its geological origins. When multivariate statistical analysis is applied to results obtained by XRD, two groups appear: the first one with a sample with zero percentage of iron oxide and the second one with the rest of the samples, which is classified in two groups. A correlation is observed between the alkaline content (XRF) and illite (XRD), CaO and MgO with dolomite and indirectly between the weight loss after heating at 1000?C and the contents of phase minerals that lose structural water (illite + chlorite) or carbon dioxide (dolomite). The present investigation has interest and implications for geochemistry and analytical chemistry concerning earth rocks and silicate raw materials.