Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s...Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.展开更多
The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. In...The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electron- beam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.展开更多
Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 b...Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.展开更多
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in...A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Qm, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: 1 High Qm started to appear from Nov. 9, 1999. The events giving the deduced high Qm value clustered in a region with their epicenter dis- tances being between 32 and 46 km to the Yingkou station. This Qm versus distance observation obviously deviates from the normal trend of Qm linearly increasing with distance. 2 The average Qm before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Qm between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Qm after the M=5.1 event is 204.展开更多
In recent decades,low-frequency(LF)experiments based on the forced-oscillation(FO)method have become common practice in many rock physics laboratories for measuring the elastic and anelastic properties of rocks.Howeve...In recent decades,low-frequency(LF)experiments based on the forced-oscillation(FO)method have become common practice in many rock physics laboratories for measuring the elastic and anelastic properties of rocks.However,the use of the electronic displacement sensors in traditional acquisition systems of FO devices such as conventional capacitive transducers or strain gauges seriously limits both the efficiency and productivity of LF measurements,and,due to the limited contact area of the displacement sensors with a sample under test,increases the requirements for sample homogeneity.In this paper,we present the first results obtained in the development of a new laboratory method elaborated to measure the elastic properties of solids.The method is a further development of the FO method where traditional data acquisition is replaced by acquisition based on fiber-optic distributed acoustic sensing(DAS)technology.The new method was tested in a laboratory study using two FO setups designed for measurements under uniaxial and confining pressures.The study was carried out on a sample made from polymethyl methacrylate(PMMA)and an aluminium standard,first under uniaxial pressure at FO frequencies of 1,10,30,60 and 100 Hz,and then under confining pressure at an FO frequency of 1 Hz.Both uniaxial and confining pressures were equal to 10 MPa,and the strain in the PMMA sample in all measurements did not exceed 4×10^(-8).The performance of DAS acquisition was compared with the measurements conducted at a strain of 1×10^(-6) using the traditional FO method based on the use of semiconductor strain gauges and the ultrasonic method.The results of the DAS measurements are in good agreement with the FO measurements carried out using semiconductor strain gauges and with the literature data.展开更多
The seismic records of borehole-to-borehole me- asurements on frequency of 200 Hz in the mi-crostrain range have been analysed. Microplas-ticity manifestations caused by seismic wave are detected on seismic records. I...The seismic records of borehole-to-borehole me- asurements on frequency of 200 Hz in the mi-crostrain range have been analysed. Microplas-ticity manifestations caused by seismic wave are detected on seismic records. It is the lad-der-like stepwise change in amplitude course in some parts of the seismic trace. The step dura-tion (time plateau) presents the amplitude- dependent time delay that shifts the arrival time and protracts pulse front. The microplastic process occurs owing to the anomalous re-alignment of the internal stresses on the micro-structural defects in “elastic” domain. Result is the useful contribution for improvement of the theory of wave attenuation in the rocks. It can also be used in solving the applied problems in material science, seismic prospecting, diagnos-tics etc.展开更多
The study of seismic attenuation property is a major subject in seismology. Seismic waves recorded by seismic stations (seismographs) contain source effect, seismic wave propagation effect, site response of seismic ...The study of seismic attenuation property is a major subject in seismology. Seismic waves recorded by seismic stations (seismographs) contain source effect, seismic wave propagation effect, site response of seismic stations and instrumental response. The path effect of seismic wave propagation, site response of seismic stations and instrumental response must be taken out in the study of source property with seismic data. The path effect of seismic wave propagation (seismic attenuation) involves an important influential factor, the anelastic attenuation of medium, which is measured with quality factor Q, apart from geometric attenuation with the distance. As a basic physical parameter of the Earth medium, Q value is essential for quantitative study of earthquakes and source property (e.g. determination of source parameters), which is widely used in earthquake source physics and engineering seismology.展开更多
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ...The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.展开更多
Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional vari...Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional variables distribution that should come to be. On the basis of linear nonhydrostatic anelastic equations, the paper hereby compares, mainly graphically, the computational dispersion with analytical solutions for four kinds of 3-dimensional meshes commonly found in mesoscale models, in terms of frequency, horizontal and vertical group velocities. The result indicates that the 3-D mesh C/CP has the best computational dispersion, followed by Z/LZ and Z/LY, with the C/L having the worst performance. It is then known that the C/CP mesh is the most desirable allocation in the design of nonhydrostatic baroclinic models. The mesh has, however, larger errors when dealing with shorter horizontal wavelengths. For the simulation of smaller horizontal scales, the horizontal grid intervals have to be shortened to reduce the errors. Additionally, in view of the dominant use of C/CP mesh in finite-difference models, it should be used in conjunction with the Z/LZ or Z/LY mesh if variables are allocated in spectral models.展开更多
Stability related to theoretical model for catastrophic weather prediction, which includes non-hydrostatic perfect elastic model and anelastic model, is discussed and analyzed in detail. It is proved that non-hydrosta...Stability related to theoretical model for catastrophic weather prediction, which includes non-hydrostatic perfect elastic model and anelastic model, is discussed and analyzed in detail. It is proved that non-hydrostatic perfect elastic equations set is stable in the class of infinitely differentiable function. However, for the anelastic equations set, its continuity equation is changed in form because of the particular hypothesis for fluid, so "the matching consisting of both viscosity coefficient and incompressible assumption" appears, thereby the most important equations set of this class in practical prediction shows the same instability in topological property as Navier-Stokes equation, which should be avoided first in practical numerical prediction. In light of this, the referenced suggestions to amend the applied model are finally presented.展开更多
The potential temperature vorticity has been introduced to polish the (momentum) vorticity - streamfunction method for solving the two-dimensional and nonhydrostatic model with much accuracy but not many increments of...The potential temperature vorticity has been introduced to polish the (momentum) vorticity - streamfunction method for solving the two-dimensional and nonhydrostatic model with much accuracy but not many increments of computation. The three-step procedure introduced in the present paper can be used to solve both shallow and deep dynamic models.展开更多
The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at...The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at the nano scale,the fundamental knowledge of the atomic basis for such structural heterogeneity and its impact on the overall properties of MGs is still lacking.We reviewed recent research on unraveling the structure heterogeneity in MGs,with emphases on the use of dynamic atomic force microscopy,the characterization of glass anelasticity by nanoindentation,and the establishment of numerous correlations with structural heterogeneity.展开更多
Linear rolling guideways(LRGs) play an important role in precision engineering. In the pre-rolling region, the hysteretic friction force exerts great impacts on the positioning accuracy. Numerical and experimental stu...Linear rolling guideways(LRGs) play an important role in precision engineering. In the pre-rolling region, the hysteretic friction force exerts great impacts on the positioning accuracy. Numerical and experimental studies of the hysteresis of friction force are presented in this paper. A model, which is based on the stripe theory and the simplified theory of rolling contact, is built to describe the transient hysteresis of the friction force. Then, the model is modified by taking the anelasticity effect into consideration. Experimentally, a linear motor direct-drive setup is utilized to measure the transient asymmetrical hysteresis of the friction force in the pre-rolling region of an LRG. The influences of the pre-rolling displacement and the dwelling time on the asymmetrical hysteresis of the friction force are studied. The numerical and experimental results are well correlated, which shows good accuracy of the model. The transient asymmetrical hysteresis of friction force in the pre-rolling region of LRGs can thus be determined using the model.展开更多
In situ stress state becomes more and more significant with in-depth research on geodynamics and energy development.However,there has not been an economic and effective method developed to determine deep three-dimensi...In situ stress state becomes more and more significant with in-depth research on geodynamics and energy development.However,there has not been an economic and effective method developed to determine deep three-dimensional in situ stress.The Anelastic Strain Recovery(ASR)method is a newly developed technique that can determine three-dimensional in situ stresses.After the 12 May 2008 Ms8.0 Wenchuan earthquake,the ASR method was used for the first time in China's Mainland to measure the in situ stresses in the WFSD scientific boreholes in Sichuan Province,China.In this paper,the basic procedure of the ASR method is introduced in detail and the compliances of ASR for boring cores are investigated.The results show that the maximum principal stress direction was NW64°at a measured depth(MD)of 1173 m(vertical depth 1151 m)in WFSD-1.The ratio of shear mode to the volume mode compliance of ASR was 2.9.And the three principal stresses at 1173 m MD in WFSD-1are 43,28 and 25 MPa.Combined with stress measurement results determined using other in situ measurement methods along the Longmenshan fault zone,the directions of the maximum horizontal principal stress changes from E-W to NEE-SWW to NWW-SEE when moving from NE to SW along the Longmenshan fault zone.This change is in agreement with the stress regime of the Longmenshan fault zone of the Wenchuan Earthquake,which supports a stress regime consisting predominantly of thrusts in the southwest and strike-slip in the northeast.展开更多
Mechanical cycling is one of the effective methods to rejuvenate metallic glasses(MGs)and improve their mechanical properties.The anelastic origin of the rejuvenation by mechanical cycling in a La_(30)Ce_(30)Ni_(10)Al...Mechanical cycling is one of the effective methods to rejuvenate metallic glasses(MGs)and improve their mechanical properties.The anelastic origin of the rejuvenation by mechanical cycling in a La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10) MG was investigated via differential scanning calorimetry(DSC)and dynamic mechanical analysis(DMA).We demonstrate that mechanical cycling promotes the activation of flow defects with short relaxation times,leading to anelastic strains and therefore considerable energy storage,which manifests itself as larger relaxation enthalpy on the DSC curves of MGs.However,the MGs release the excess relaxation enthalpy caused by anelastic strain with time,thus suppressing atomic mobility and elevating β relaxation activation energies.The strategy of mechanical cycling at small strains,as demonstrated in the current work,can expand the energy states of MGs over a wide range of relaxation enthalpies.展开更多
The anelastic deformation behavior of Pd_(20)Pt_(20)Cu_(20)Ni_(20)P_(20) high-entropy metallic glass was probed by monitoring the stress relaxation and recovery processes. The stress relaxation under consecutive strai...The anelastic deformation behavior of Pd_(20)Pt_(20)Cu_(20)Ni_(20)P_(20) high-entropy metallic glass was probed by monitoring the stress relaxation and recovery processes. The stress relaxation under consecutive strain steps can be described by the Kohlrausch-Williams-Watts(KWW) function. In addition, considering a hierarchy of relaxation processes related to the structural heterogeneity, a constitutive model is proposed in order to describe the whole process of stress relaxation and determine the contribution of different time scales. Moreover, a crossover from stochastic activation to percolation of flow defects with the ultimate strain can be observed during stress relaxation process. The anelastic recovery process after a strain step is studied as a function of the initial strain level and characterized by means of a direct spectrum analysis. The peaks in the recovery time-spectra revealed the evolution of flow defects in Pd_(20)Pt_(20)Cu_(20)Ni_(20)P_(20) high-entropy metallic glass. The understanding of the atomic free-volume zones effect and the anelastic deformation provides important insight into how atomic structural features affect the deformation behavior of high-entropy metallic glasses, and may provide a new avenue into the improvement of their mechanical properties.展开更多
Finding the internal-friction peak of grain boundary anelastic relaxation was one of the important breakthroughs in the study of internal friction in the last century.But the micro-mechanism of grain boundary anelasti...Finding the internal-friction peak of grain boundary anelastic relaxation was one of the important breakthroughs in the study of internal friction in the last century.But the micro-mechanism of grain boundary anelastic relaxations is still obscure.Based on the observations of the grain boundary seg-regation or depletion of solute induced by an applied stress,the following micro-mechanism was suggested:grain-boundaries will work as sources to emit vacancies when a compressive stress is exerted on them and as sinks to absorb vacancies when a tensile stress is exerted,inducing grain-boundary depletion or segregation of solute,respectively.The equations of vacancy and solute con-centrations at grain boundaries were established under the equilibrium of grain-boundary anelastic relaxation.With these the kinetic equations were established for grain boundary segregation and depletion during the grain boundary relaxation progress.展开更多
基金Project supported by Guangdong Major Project of Basic and Applied Basic Research,China (Grant No.2019B030302010)the National Natural Science Foundation of China (Grant No.52130108)+1 种基金Guangdong Basic and Applied Basic Research,China (Grant No.2021B1515140005)Pearl River Talent Recruitment Program (Grant No.2021QN02C04)。
文摘Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2011CB933300), the National Natural Science Foundation of China (Nos. 51271134 and J1210061), the Fundamental Research Funds for the Central Universities, the CERS-1-26 (CERS-China Equipment and Education Resources System), and the China Postdoctoral Science Foundation (Nos. 2013M540602 and 2014T70734).
文摘The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electron- beam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.
基金Project(12JCYBJC32100)supported by the Tianjin Research Program of Application Foundation and Advanced Technology,ChinaProject([2013]693)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.
基金State Key Project of Science and Technology during the Tenth Five-year Plan (2004BA601B01-03-01).
文摘A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Qm, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: 1 High Qm started to appear from Nov. 9, 1999. The events giving the deduced high Qm value clustered in a region with their epicenter dis- tances being between 32 and 46 km to the Yingkou station. This Qm versus distance observation obviously deviates from the normal trend of Qm linearly increasing with distance. 2 The average Qm before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Qm between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Qm after the M=5.1 event is 204.
文摘In recent decades,low-frequency(LF)experiments based on the forced-oscillation(FO)method have become common practice in many rock physics laboratories for measuring the elastic and anelastic properties of rocks.However,the use of the electronic displacement sensors in traditional acquisition systems of FO devices such as conventional capacitive transducers or strain gauges seriously limits both the efficiency and productivity of LF measurements,and,due to the limited contact area of the displacement sensors with a sample under test,increases the requirements for sample homogeneity.In this paper,we present the first results obtained in the development of a new laboratory method elaborated to measure the elastic properties of solids.The method is a further development of the FO method where traditional data acquisition is replaced by acquisition based on fiber-optic distributed acoustic sensing(DAS)technology.The new method was tested in a laboratory study using two FO setups designed for measurements under uniaxial and confining pressures.The study was carried out on a sample made from polymethyl methacrylate(PMMA)and an aluminium standard,first under uniaxial pressure at FO frequencies of 1,10,30,60 and 100 Hz,and then under confining pressure at an FO frequency of 1 Hz.Both uniaxial and confining pressures were equal to 10 MPa,and the strain in the PMMA sample in all measurements did not exceed 4×10^(-8).The performance of DAS acquisition was compared with the measurements conducted at a strain of 1×10^(-6) using the traditional FO method based on the use of semiconductor strain gauges and the ultrasonic method.The results of the DAS measurements are in good agreement with the FO measurements carried out using semiconductor strain gauges and with the literature data.
文摘The seismic records of borehole-to-borehole me- asurements on frequency of 200 Hz in the mi-crostrain range have been analysed. Microplas-ticity manifestations caused by seismic wave are detected on seismic records. It is the lad-der-like stepwise change in amplitude course in some parts of the seismic trace. The step dura-tion (time plateau) presents the amplitude- dependent time delay that shifts the arrival time and protracts pulse front. The microplastic process occurs owing to the anomalous re-alignment of the internal stresses on the micro-structural defects in “elastic” domain. Result is the useful contribution for improvement of the theory of wave attenuation in the rocks. It can also be used in solving the applied problems in material science, seismic prospecting, diagnos-tics etc.
基金Early-stage study project of the national key foundation research (2002CCD01700) and the key project of Yunnan Province during the 10th Five-year plan.
文摘The study of seismic attenuation property is a major subject in seismology. Seismic waves recorded by seismic stations (seismographs) contain source effect, seismic wave propagation effect, site response of seismic stations and instrumental response. The path effect of seismic wave propagation, site response of seismic stations and instrumental response must be taken out in the study of source property with seismic data. The path effect of seismic wave propagation (seismic attenuation) involves an important influential factor, the anelastic attenuation of medium, which is measured with quality factor Q, apart from geometric attenuation with the distance. As a basic physical parameter of the Earth medium, Q value is essential for quantitative study of earthquakes and source property (e.g. determination of source parameters), which is widely used in earthquake source physics and engineering seismology.
基金supported by the NSFC (grant Nos. 41631072, 41721003, 41874023, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (grant No. B17033)the DAAD Thematic Network Project (grant No. 57173947)
文摘The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.
基金Supported by the open research program of LASG Institute of Atmospheric Physics Chinese Academy of Sciences
文摘Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional variables distribution that should come to be. On the basis of linear nonhydrostatic anelastic equations, the paper hereby compares, mainly graphically, the computational dispersion with analytical solutions for four kinds of 3-dimensional meshes commonly found in mesoscale models, in terms of frequency, horizontal and vertical group velocities. The result indicates that the 3-D mesh C/CP has the best computational dispersion, followed by Z/LZ and Z/LY, with the C/L having the worst performance. It is then known that the C/CP mesh is the most desirable allocation in the design of nonhydrostatic baroclinic models. The mesh has, however, larger errors when dealing with shorter horizontal wavelengths. For the simulation of smaller horizontal scales, the horizontal grid intervals have to be shortened to reduce the errors. Additionally, in view of the dominant use of C/CP mesh in finite-difference models, it should be used in conjunction with the Z/LZ or Z/LY mesh if variables are allocated in spectral models.
基金Project supported by the National Natural Science Foundation of China (Major Program of the Tenth Five-Year Plan) (No.90411006)the Post-Doctoral Science Foundation of Jiangsu Province of China(No.0602024C)
文摘Stability related to theoretical model for catastrophic weather prediction, which includes non-hydrostatic perfect elastic model and anelastic model, is discussed and analyzed in detail. It is proved that non-hydrostatic perfect elastic equations set is stable in the class of infinitely differentiable function. However, for the anelastic equations set, its continuity equation is changed in form because of the particular hypothesis for fluid, so "the matching consisting of both viscosity coefficient and incompressible assumption" appears, thereby the most important equations set of this class in practical prediction shows the same instability in topological property as Navier-Stokes equation, which should be avoided first in practical numerical prediction. In light of this, the referenced suggestions to amend the applied model are finally presented.
文摘The potential temperature vorticity has been introduced to polish the (momentum) vorticity - streamfunction method for solving the two-dimensional and nonhydrostatic model with much accuracy but not many increments of computation. The three-step procedure introduced in the present paper can be used to solve both shallow and deep dynamic models.
基金supported by the Research Grant Council(RGC)of the government of Hong Kong through the General Research Fund(Grant No.City U 117612)GRC(Grant No.City U 530711)
文摘The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at the nano scale,the fundamental knowledge of the atomic basis for such structural heterogeneity and its impact on the overall properties of MGs is still lacking.We reviewed recent research on unraveling the structure heterogeneity in MGs,with emphases on the use of dynamic atomic force microscopy,the characterization of glass anelasticity by nanoindentation,and the establishment of numerous correlations with structural heterogeneity.
文摘Linear rolling guideways(LRGs) play an important role in precision engineering. In the pre-rolling region, the hysteretic friction force exerts great impacts on the positioning accuracy. Numerical and experimental studies of the hysteresis of friction force are presented in this paper. A model, which is based on the stripe theory and the simplified theory of rolling contact, is built to describe the transient hysteresis of the friction force. Then, the model is modified by taking the anelasticity effect into consideration. Experimentally, a linear motor direct-drive setup is utilized to measure the transient asymmetrical hysteresis of the friction force in the pre-rolling region of an LRG. The influences of the pre-rolling displacement and the dwelling time on the asymmetrical hysteresis of the friction force are studied. The numerical and experimental results are well correlated, which shows good accuracy of the model. The transient asymmetrical hysteresis of friction force in the pre-rolling region of LRGs can thus be determined using the model.
基金financially supported by the"Wenchuan Earthquake Fault Scientific Drilling"of the National Science and Technology Planning Project,Sinoprobe Deep Exploration in China Project(Grant No.SinoProbe-07)Fundamental Research Fund for Chinese Academy of Geological Sciences(Grant No.SYS1301)+1 种基金Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science(JSPS)(Grant No.25287134)Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan(Grant No.21107006)
文摘In situ stress state becomes more and more significant with in-depth research on geodynamics and energy development.However,there has not been an economic and effective method developed to determine deep three-dimensional in situ stress.The Anelastic Strain Recovery(ASR)method is a newly developed technique that can determine three-dimensional in situ stresses.After the 12 May 2008 Ms8.0 Wenchuan earthquake,the ASR method was used for the first time in China's Mainland to measure the in situ stresses in the WFSD scientific boreholes in Sichuan Province,China.In this paper,the basic procedure of the ASR method is introduced in detail and the compliances of ASR for boring cores are investigated.The results show that the maximum principal stress direction was NW64°at a measured depth(MD)of 1173 m(vertical depth 1151 m)in WFSD-1.The ratio of shear mode to the volume mode compliance of ASR was 2.9.And the three principal stresses at 1173 m MD in WFSD-1are 43,28 and 25 MPa.Combined with stress measurement results determined using other in situ measurement methods along the Longmenshan fault zone,the directions of the maximum horizontal principal stress changes from E-W to NEE-SWW to NWW-SEE when moving from NE to SW along the Longmenshan fault zone.This change is in agreement with the stress regime of the Longmenshan fault zone of the Wenchuan Earthquake,which supports a stress regime consisting predominantly of thrusts in the southwest and strike-slip in the northeast.
基金supported by the National Natural Science Foundation of China (Grant Nos.51971178,and 52271153)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province(Grant No.2021JC-12)+5 种基金the Fundamental Research Funds for the Central Universities (Grant No.D5000220034)the Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-jq X0001)supported by the National Natural Science Foundation of China (Grant No.12072344)the Youth Innovation Promotion Association of the Chinese Academy of Sciencessupport from the Research Grant Council (RGC)the Hong Kong government through the General Research Fund (GRF)(Grant Nos.City U11200719,and City U11213118)
文摘Mechanical cycling is one of the effective methods to rejuvenate metallic glasses(MGs)and improve their mechanical properties.The anelastic origin of the rejuvenation by mechanical cycling in a La_(30)Ce_(30)Ni_(10)Al_(20)Co_(10) MG was investigated via differential scanning calorimetry(DSC)and dynamic mechanical analysis(DMA).We demonstrate that mechanical cycling promotes the activation of flow defects with short relaxation times,leading to anelastic strains and therefore considerable energy storage,which manifests itself as larger relaxation enthalpy on the DSC curves of MGs.However,the MGs release the excess relaxation enthalpy caused by anelastic strain with time,thus suppressing atomic mobility and elevating β relaxation activation energies.The strategy of mechanical cycling at small strains,as demonstrated in the current work,can expand the energy states of MGs over a wide range of relaxation enthalpies.
基金supported by the NSFC (Grant No. 51971178)the Natural Science Foundation of Shaanxi Province (Grant No. 2021JC-12)+3 种基金financial support from MICINN (grant FIS2017–82625-P)Generalitat de Catalunya (Grant 2017SGR0042)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX202031)China Scholarship Council (CSC) under Grant 202006290092。
文摘The anelastic deformation behavior of Pd_(20)Pt_(20)Cu_(20)Ni_(20)P_(20) high-entropy metallic glass was probed by monitoring the stress relaxation and recovery processes. The stress relaxation under consecutive strain steps can be described by the Kohlrausch-Williams-Watts(KWW) function. In addition, considering a hierarchy of relaxation processes related to the structural heterogeneity, a constitutive model is proposed in order to describe the whole process of stress relaxation and determine the contribution of different time scales. Moreover, a crossover from stochastic activation to percolation of flow defects with the ultimate strain can be observed during stress relaxation process. The anelastic recovery process after a strain step is studied as a function of the initial strain level and characterized by means of a direct spectrum analysis. The peaks in the recovery time-spectra revealed the evolution of flow defects in Pd_(20)Pt_(20)Cu_(20)Ni_(20)P_(20) high-entropy metallic glass. The understanding of the atomic free-volume zones effect and the anelastic deformation provides important insight into how atomic structural features affect the deformation behavior of high-entropy metallic glasses, and may provide a new avenue into the improvement of their mechanical properties.
基金Supported by the National Natural Science Foundation of China(Grant No.50771036)
文摘Finding the internal-friction peak of grain boundary anelastic relaxation was one of the important breakthroughs in the study of internal friction in the last century.But the micro-mechanism of grain boundary anelastic relaxations is still obscure.Based on the observations of the grain boundary seg-regation or depletion of solute induced by an applied stress,the following micro-mechanism was suggested:grain-boundaries will work as sources to emit vacancies when a compressive stress is exerted on them and as sinks to absorb vacancies when a tensile stress is exerted,inducing grain-boundary depletion or segregation of solute,respectively.The equations of vacancy and solute con-centrations at grain boundaries were established under the equilibrium of grain-boundary anelastic relaxation.With these the kinetic equations were established for grain boundary segregation and depletion during the grain boundary relaxation progress.