The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can ...The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.展开更多
Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,result...Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,resulting in approx-imately 6900000 deaths.High-risk groups,identified by the Centers for Disease Control and Prevention,include individuals with conditions like type 2 diabetes mellitus(T2DM),obesity,chronic lung disease,serious heart conditions,and chronic kidney disease.Research indicates that those with T2DM face a hei-ghtened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals.Examining the renin-angiotensin system(RAS),a vital regulator of blood pressure and pulmonary stability,reveals the significance of the angiotensin-converting enzyme(ACE)and ACE2 enzymes.ACE converts angiotensin-I to the vasoconstrictor angiotensin-II,while ACE2 counters this by converting angiotensin-II to angiotensin 1-7,a vasodilator.Reduced ACE2 exp-ression,common in diabetes,intensifies RAS activity,contributing to conditions like inflammation and fibrosis.Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels,concerns arise regarding the potential elevation of ACE2 receptors on cell membranes,potentially facilitating COVID-19 entry.This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome cor-onavirus 2 infection and associated complications in T2DM.Potential treatment strategies,including recombinant human ACE2 therapy,broad-spectrum antiviral drugs,and epigenetic signature detection,are discussed as promising avenues in the battle against this pandemic.展开更多
BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),characterised by hepatic lipid accumulation,causes inflammation and oxidative stress accompanied by cell damage and fibrosis.Liver injury(LI)i...BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),characterised by hepatic lipid accumulation,causes inflammation and oxidative stress accompanied by cell damage and fibrosis.Liver injury(LI)is also frequently reported in patients hospitalised with coronavirus disease 2019(COVID-19),while preexisting MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy.Mechanisms of injury at the cellular level remain unclear,but it may be significant that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)which causes COVID-19,uses angiotensin-converting expression enzyme 2(ACE2),a key regulator of the‘anti-inflammatory’arm of the renin-angiotensin system,for viral attachment and host cell invasion.AIM To determine if hepatic ACE2 levels are altered during progression of MASLD and in patients who died with severe COVID-19.METHODS ACE2 protein levels and localisation,and histological fibrosis and lipid droplet accumulation as markers of MASLD were determined in formalin-fixed liver tissue sections across the MASLD pathological spectrum(isolated hepatocellular steatosis,metabolic dysfunction-associated steatohepatitis(MASH)+/-fibrosis,end-stage cirrhosis)and in post-mortem tissues from patients who had died with severe COVID-19,using ACE2 immunohistochemistry and haematoxylin and eosin and picrosirius red staining of total collagen and lipid droplet areas,followed by quantification using machine learning-based image pixel classifiers.RESULTS ACE2 staining is primarily intracellular and concentrated in the cytoplasm of centrilobular hepatocytes and apical membranes of bile duct cholangiocytes.Strikingly,ACE2 protein levels are elevated in non-fibrotic MASH compared to healthy controls but not in the progression to MASH with fibrosis and in cirrhosis.ACE2 protein levels and histological fibrosis are not associated,but ACE2 and liver lipid droplet content are significantly correlated across the MASLD spectrum.Hepatic ACE2 levels are also increased in COVID-19 patients,especially those showing evidence of LI,but are not correlated with the presence of SARS-CoV-2 virus in the liver.However,there is a clear association between the hepatic lipid droplet content and the presence of the virus,suggesting a possible functional link.CONCLUSION Hepatic ACE2 levels were elevated in nonfibrotic MASH and COVID-19 patients with LI,while lipid accumulation may promote intra-hepatic SARS-CoV-2 replication,accelerating MASLD progression and COVID-19-mediated liver damage.展开更多
Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve a...Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.展开更多
Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ...Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases.At present,there is still a lack of effective prevention and treatment meth...BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases.At present,there is still a lack of effective prevention and treatment methods in clinical practice.Hepatic stellate cell(HSC)plays a key role in liver fibrogenesis.In recent years,the study of liver fibrosis targeting HSC autophagy has become a hot spot in this research field.Angiotensin-converting enzyme 2(ACE2)is a key negative regulator of reninangiotensin system,and its specific molecular mechanism on autophagy and liver fibrosis needs to be further explored.AIM To investigate the effect of ACE2 on hepatic fibrosis in mice by regulating HSC autophagy through the Adenosine monophosphate activates protein kinases(AMPK)/mammalian target of rapamycin(mTOR)pathway.METHODS Overexpression of ACE2 in a mouse liver fibrosis model was induced by injection of liver-specific recombinant adeno-associated virus ACE2 vector(rAAV2/8-ACE2).The degree of liver fibrosis was assessed by histopathological staining and the biomarkers in mouse serum were measured by Luminex multifactor analysis.The number of apoptotic HSCs was assessed by terminal deoxynucleoitidyl transferase-mediated dUTP nick-end labeling(TUNEL)and immunofluorescence staining.Transmission electron microscopy was used to identify the changes in the number of HSC autophagosomes.The effect of ACE2 overexpression on Wu Y et al.ACE2 improves liver fibrosis through autophagy WJG https://www.wjgnet.com 4976 September 7,2023 Volume 29 Issue 33 autophagy-related proteins was evaluated by multicolor immunofluorescence staining.The expression of autophagy-related indicators and AMPK pathway-related proteins was measured by western blotting.RESULTS A mouse model of liver fibrosis was successfully established after 8 wk of intraperitoneal injection of carbon tetrachloride(CCl4).rAAV2/8-ACE2 administration reduced collagen deposition and alleviated the degree of liver fibrosis in mice.The serum levels of platelet-derived growth factor,angiopoietin-2,vascular endothelial growth factor and angiotensin II were decreased,while the levels of interleukin(IL)-10 and angiotensin-(1-7)were increased in the rAAV2/8-ACE2 group.In addition,the expression of alpha-smooth muscle actin,fibronectin,and CD31 was down-regulated in the rAAV2/8-ACE2 group.TUNEL and immunofluorescence staining showed that rAAV2/8-ACE2 injection increased HSC apoptosis.Moreover,rAAV2/8-ACE2 injection notably decreased the number of autophagosomes and the expression of autophagy-related proteins(LC3I,LC3II,Beclin-1),and affected the expression of AMPK pathway-related proteins(AMPK,p-AMPK,p-mTOR).CONCLUSION ACE2 overexpression can inhibit HSC activation and promote cell apoptosis by regulating HSC autophagy through the AMPK/mTOR pathway,thereby alleviating liver fibrosis and hepatic sinusoidal remodeling.展开更多
To address the energy crisis and alleviate the rising level of CO_(2)in the atmosphere,various CO_(2)capture and utilization(CCU)technologies have been developed.The use of electro-enzyme coupling systems is a promisi...To address the energy crisis and alleviate the rising level of CO_(2)in the atmosphere,various CO_(2)capture and utilization(CCU)technologies have been developed.The use of electro-enzyme coupling systems is a promising strategy for the sustainable production of fuels,chemicals and materials using CO_(2)as the feedstock.In this review,the recent progresses in the development of electro-enzyme coupling systems for the selective reduction of CO_(2)are systematically summarized.We first provide a brief background about the significance and challenges in the direct conversion of CO_(2)into value-added chemicals.Next,we describe the materials and strategies in the design of electrodes,as well as the common enzymes used in the electro-enzyme coupling systems.Then,we focus on the state-of-the-art routes for the electro-enzyme coupling conversion of CO_(2)into a variety of compounds(formate,CO,methanol,C≥2chemicals)by a single enzyme or multienzyme systems.The emerging approaches and materials used for the construction of electro-enzyme coupling systems to enhance the electron transfer efficiency and the catalytic activity/stability are highlighted.The main challenges and perspectives in the integration of enzymatic and electrochemical strategies are also discussed.展开更多
Objective Ubiquitin conjugate enzyme E2O(UBE2O)is a ubiquitin-conjugating enzyme that has been reported to be involved in tumorigenesis.This study investigated the role of UBE2O in hepatocellular carcinoma(HCC).Method...Objective Ubiquitin conjugate enzyme E2O(UBE2O)is a ubiquitin-conjugating enzyme that has been reported to be involved in tumorigenesis.This study investigated the role of UBE2O in hepatocellular carcinoma(HCC).Methods The expression of UBE2O was detected using qRT-PCR,Western blotting,and immunohistochemical staining.Cell proliferation and Transwell assays were used to detect proliferation,migration,and invasion of HCC cells,respectively.Bioinformatic analysis was performed to analyze the relationship between UBE2O and the clinical features,prognosis,and immune cell infiltration of HCC.Results UBE2O was significantly over-expressed in HCC tissues.High expression of UBE2O was associated with poor tumor grade and poor prognosis.Functional experiments showed that down-regulation of UBE2O inhibited HCC cell proliferation,migration,and invasion.Co-expression gene analysis and gene set enrichment analysis showed that UBE2O was associated with protein hydrolysis,cell cycle,and cancer-related pathways in HCC.The results of immune analysis revealed that the expression of UBE2O was positively correlated with the immune infiltration and expression of immune-related chemokines of HCC.Conclusions UBE2O is significantly correlated with the prognosis of HCC and may be a valuable prognostic biomarker for HCC.展开更多
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete...A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.展开更多
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem...A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.展开更多
Ara h 2是花生主要过敏原之一,为开发食物中Ara h 2过敏原成分的快速检测方法,减少因误食导致花生过敏事件的发生,该研究采用鼠源单克隆抗体作为捕获抗体、兔源多克隆抗体作为检测抗体,通过棋盘法优化抗体工作浓度,建立了一种检测花生...Ara h 2是花生主要过敏原之一,为开发食物中Ara h 2过敏原成分的快速检测方法,减少因误食导致花生过敏事件的发生,该研究采用鼠源单克隆抗体作为捕获抗体、兔源多克隆抗体作为检测抗体,通过棋盘法优化抗体工作浓度,建立了一种检测花生过敏原Ara h 2的间接双抗夹心化学发光酶免疫分析法,并对该方法的灵敏度、准确度、精密度和特异性进行评价。该方法的检出限为1.085 ng/mL,线性范围为3.12~200 ng/mL,添加回收率为78.30%~94.39%,批内和批间变异系数均小于10%,且特异性良好,与其他常见食物过敏原无交叉反应。该方法与相同抗体所建立的间接双抗夹心酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)方法相比,在灵敏度上表现出一定优势。该研究开发的化学发光酶免疫分析法可对花生食品生产过程中和消费前的Ara h 2过敏原成分检测提供可靠的技术支持。展开更多
Summary: In order to investigate whether Yinchenhao decoction (YCHD) attenuates hepatic fibro- genesis in the bile duct ligation (BDL) model via recovering and restoring the self-regulation and bal- ance of the r...Summary: In order to investigate whether Yinchenhao decoction (YCHD) attenuates hepatic fibro- genesis in the bile duct ligation (BDL) model via recovering and restoring the self-regulation and bal- ance of the renin-angiotensin system (RAS), 33 specific-pathogen-free (SPF) male Sprague-Dawley rats with common BDL and scission were randomly divided into five groups as follows: G1, the sham group (n=4); G2, BDL 7-day group (n=5); G3, BDL+YCHD 430 mg/mL (n=8); G4, BDL+losartan 0.65 mg/mL (ARB group, n=8); G5, model group (BDL without any treatment, n=8). YCHD and losartan (10 mL.kgl.day-1) were given by gastric gavage for 16 days following BDL in G3 and G4 groups, respec- tively. The effect of YCHD on liver fibrosis and the detailed molecular mechanisms were assessed by liver function including total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IDBIL), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Histological changes were ob-. served by transmission electron microscopy (TEM) and Masson trichrome staining. Western blotting was used to detect the protein expression level of the renin-angiotensin system (RAS) components in- cluding angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R), ACE2, angio- tensin II (Ang II) as well as transforming growth factor 131 (TGF131). The experimental data were ana- lyzed by principle component analytical method of pattern recognition. The results showed that bio- chemically, serum TBIL, DBIL, IDBIL, ALT and AST levels were markedly increased following BDL as compared with the sham group (P〈0.05). Serum TBIL, IDBIL and DBIL levels in G3 group were dramatically decreased as compared with G5 and G4 groups (P〈0.05). Serum AST level in G3 was sig- nificantly lowered than in G5 group (P〈0.05), but there was no significant difference in ALT among G3, G4 and G5 groups (P〉0.05). Histologically, livers in G3 group showed less hepatocytes necrosis, less bile duct hyperplasia and less collagen formation than in G4 and G5 groups. The protein expression lev- els of ACE2, ACE, Ang II, AT1R and TGF131 in G2, G3 and G4 groups were significantly higher than in sham group (P〈0.05), and lower than in G5 group (P〈0.05). However, the differences among G2, G3 and G4 groups were not significant (P〉0.05). ACE2 protein expression in G3 group was significantly higher than in G2 group (P〈0.05) and there was no significant difference in comparison with G4 group (P〉0.05). Moreover, the protein expression of TGF131 in G3 group was significantly lower than in G5 and G4 groups (P〈0.05). Our findings suggest that the antifibrotic effects of YCHD may be associated with the decreased classical RAS pathway components and TGFI31 downexpression so as to recover and rebuild self-regulation of the RAS by elevating the protein expression of ACE2.展开更多
Metal (Me=Fe(III), Mo(VI), Mn(II), Co(II), Ni(II), Zn(II) and Cu(II)) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes (MeHNT) were synthesized and used as mimic-enzyme catalysts to mimic the active group of hor...Metal (Me=Fe(III), Mo(VI), Mn(II), Co(II), Ni(II), Zn(II) and Cu(II)) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes (MeHNT) were synthesized and used as mimic-enzyme catalysts to mimic the active group of horseradish peroxidase (HRP). The results showed that Fe-HNT, Mo-HNT are effective catalysts, which have similar catalytic activity as HRP. The sequence of catalytic activities of tested biomimic peroxidas is Mo-HNT > Fe-HNT > Zn-HNT > Ni-HNT > Mn-HNT. Among them, Fe-HNT is used as a mimic-enzyme catalyst in determination of ascorbic acid and glucose by coupling the catalytic reaction of glucose oxidase.展开更多
The emergence of coronavirus disease-2019 induced by a newly identified bcoronavirus, namely severe acute respiratory syndrome coronavirus 2(SARSCoV-2) has constituted a public health emergency. Even though it was con...The emergence of coronavirus disease-2019 induced by a newly identified bcoronavirus, namely severe acute respiratory syndrome coronavirus 2(SARSCoV-2) has constituted a public health emergency. Even though it was considered a zoonotic disease, the virus has also spread among humans via respiratory secretions. The expression and distribution of angiotensin converting enzyme type 2(ACE2) in various human organs might also show other possible infection routes. High ACE2 ribonucleic acid expression has been identified in the gastrointestinal tract(GI) indicating its importance as a possible infection pathway of SARS-CoV-2. ACE2 induces viral entry into the host and most importantly has been found to be associated with the function of the gut. Its deficiency has been implicated in several pathologies such as colorectal inflammation. The renin-angiotensin system(RAS) is an essential regulatory cascade operating both at a local tissue level and at the systemic or circulatory level. The RAS may be important in the pathogenesis of chronic liver disease and is associated with the up-regulation of ACE2. Thus, the aim of this review is firstly, the analysis of some important general and genome characteristics of SARS-CoV-2 and secondly, and most importantly, to focus on the utility of ACE2 receptors in both SARS-CoV-2 replication and pathogenesis, especially in the GI tract.展开更多
BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the...BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the metabolism of xenobiotics. The products of phase I metabolism are then acted upon by phase II enzymes, including glutathione S-transferases (GSTs). Herbs that inhibit CYPs such as CYP3A4 or that induce GSTs may have the potential to protect against chemical carcinogenesis since the mutagenic effects of carcinogens are often mediated through an excess of CYP-generated reactive intermediates. This study was designed to investigate the effects of salvianolic acid B (Sal B), a pure compound extracted from Radix Salviae Miltiorrhizae, a Chinese herb, on cell proliferation and CYP1A2 and CYP3A4 mRNA expression in the presence or absence of rifampicin, a potent inducer of CYPs and GST protein expression in HepG2 cells. METHODS: HepG2 cells were incubated with different concentrations of Sal B. Cell proliferation was determined by SYTOX-Green nucleic acid staining. CYP3A4 and CYP1A2 mRNA expression was assayed by real-time PCR. GST protein expression was analyzed by Western blotting. RESULTS: Low concentrations of Sal B (0-20 μmol/L) had no significant effects on cell proliferation, while higher concentrations (100-250 μmol/L) significantly inhibited proliferation in a concentration-dependent manner. Ten μmol/L Sal B, but not 1 μmol/L, down-regulated CYP3A4 and CYP1A2 mRNA expression after 24 hours of incubation, whereas both 1 and 10 μmol/L Sal B down-regulated CYP3A4mRNA expression after 96 hours of incubation; moreover, 1 and 10 μmol/L Sal B inhibited CYP3A4 mRNA expression induced by rifampicin. Both 1 μmol/L and 10 μmol/L Sal B increased GST expression. CONCLUSION: Sal B inhibits CYP3A4 and CYP1A2 mRNA expression and induces GST expression in HepG2 cells.展开更多
Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute resp...Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome,multiple organ failure,and death.Despite extensive studies on the pathogenicity of SARS-CoV-2,its impact on the hepatobiliary system remains unclear.While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels,the exact source of this damage is not fully understood.Proposed mechanisms for injury include direct cytotoxicity,collateral damage from inflammation,drug-induced liver injury,and ischemia/hypoxia.However,evidence often relies on blood tests with liver enzyme abnormalities.In this comprehensive review,we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients,drawing from liver biopsies,complete autopsies,and in vitro liver analyses.We present evidence of the direct impact of SARS-CoV-2 on the liver,substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes,including mitochondrial swelling,endoplasmic reticulum dilatation,and hepatocyte apoptosis.Additional ly,we describe the diverse liver pathology observed during COVID-19 infection,encompassing necrosis,steatosis,cholestasis,and lobular inflammation.We also discuss the emergence of long-term complications,notably COVID-19-related secondary sclerosing cholangitis.Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is now the most common primary liver malignancy worldwide,and multiple risk factors attribute to the occurrence and development of HCC.Recently,increasing studies suggest that u...BACKGROUND Hepatocellular carcinoma(HCC)is now the most common primary liver malignancy worldwide,and multiple risk factors attribute to the occurrence and development of HCC.Recently,increasing studies suggest that ubiquitinconjugating enzyme E2T(UBE2T)serves as a promising prognostic factor in human cancers,although the molecular mechanism of UBE2T in HCC remains unclear.AIM To investigate the clinical relevance and role of UBE2T in HCC development.METHODS UBE2T expression in HCC tissues from the TCGA database and its association with patient survival were analyzed.A lentivirus-mediated strategy was used to knock down UBE2T in HCC cells.qRT-PCR and Western blot assays were performed to check the effect of UBE2T silencing in HCC cells.Cell growth in vitro and in vivo was analyzed by multiparametric high-content screening and the xenograft tumorigenicity assay,respectively.Cell cycle distribution and apoptosis were determined by flow cytometry.The genes regulated by UBE2T were profiled by microarray assay.RESULTS UBE2T was overexpressed in HCC tissues compared with paired and non-paired normal tissues.High expression of UBE2T predicted a poor overall survival in HCC patients.In vitro,lentivirus-mediated UBE2T knockdown significantly reduced the viability of both SMMC-7721 and BEL-7404 cells.In vivo,the xenograft tumorigenesis of SMMC-7721 cells was largely attenuated by UBE2T silencing.The cell cycle was arrested at G1/S phase in SMMC-7721 and BEL-7404 cells with UBE2T knockdown.Furthermore,apoptosis was increased by UBE2T knockdown.At the molecular level,numerous genes were dysregulated after UBE2T silencing,including IL-1B,FOSL1,PTGS2,and BMP6.CONCLUSION UBE2T plays an important role in cell cycle progression,apoptosis,and HCC development.展开更多
文摘The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.
文摘Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,resulting in approx-imately 6900000 deaths.High-risk groups,identified by the Centers for Disease Control and Prevention,include individuals with conditions like type 2 diabetes mellitus(T2DM),obesity,chronic lung disease,serious heart conditions,and chronic kidney disease.Research indicates that those with T2DM face a hei-ghtened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals.Examining the renin-angiotensin system(RAS),a vital regulator of blood pressure and pulmonary stability,reveals the significance of the angiotensin-converting enzyme(ACE)and ACE2 enzymes.ACE converts angiotensin-I to the vasoconstrictor angiotensin-II,while ACE2 counters this by converting angiotensin-II to angiotensin 1-7,a vasodilator.Reduced ACE2 exp-ression,common in diabetes,intensifies RAS activity,contributing to conditions like inflammation and fibrosis.Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels,concerns arise regarding the potential elevation of ACE2 receptors on cell membranes,potentially facilitating COVID-19 entry.This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome cor-onavirus 2 infection and associated complications in T2DM.Potential treatment strategies,including recombinant human ACE2 therapy,broad-spectrum antiviral drugs,and epigenetic signature detection,are discussed as promising avenues in the battle against this pandemic.
基金Supported by University of Edinburgh Hepatology Laboratory Internal Fundingthe Liver Endowment Funds of the Edinburgh&Lothian Health Foundation.
文摘BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),characterised by hepatic lipid accumulation,causes inflammation and oxidative stress accompanied by cell damage and fibrosis.Liver injury(LI)is also frequently reported in patients hospitalised with coronavirus disease 2019(COVID-19),while preexisting MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy.Mechanisms of injury at the cellular level remain unclear,but it may be significant that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)which causes COVID-19,uses angiotensin-converting expression enzyme 2(ACE2),a key regulator of the‘anti-inflammatory’arm of the renin-angiotensin system,for viral attachment and host cell invasion.AIM To determine if hepatic ACE2 levels are altered during progression of MASLD and in patients who died with severe COVID-19.METHODS ACE2 protein levels and localisation,and histological fibrosis and lipid droplet accumulation as markers of MASLD were determined in formalin-fixed liver tissue sections across the MASLD pathological spectrum(isolated hepatocellular steatosis,metabolic dysfunction-associated steatohepatitis(MASH)+/-fibrosis,end-stage cirrhosis)and in post-mortem tissues from patients who had died with severe COVID-19,using ACE2 immunohistochemistry and haematoxylin and eosin and picrosirius red staining of total collagen and lipid droplet areas,followed by quantification using machine learning-based image pixel classifiers.RESULTS ACE2 staining is primarily intracellular and concentrated in the cytoplasm of centrilobular hepatocytes and apical membranes of bile duct cholangiocytes.Strikingly,ACE2 protein levels are elevated in non-fibrotic MASH compared to healthy controls but not in the progression to MASH with fibrosis and in cirrhosis.ACE2 protein levels and histological fibrosis are not associated,but ACE2 and liver lipid droplet content are significantly correlated across the MASLD spectrum.Hepatic ACE2 levels are also increased in COVID-19 patients,especially those showing evidence of LI,but are not correlated with the presence of SARS-CoV-2 virus in the liver.However,there is a clear association between the hepatic lipid droplet content and the presence of the virus,suggesting a possible functional link.CONCLUSION Hepatic ACE2 levels were elevated in nonfibrotic MASH and COVID-19 patients with LI,while lipid accumulation may promote intra-hepatic SARS-CoV-2 replication,accelerating MASLD progression and COVID-19-mediated liver damage.
文摘Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.
基金supported by National Natural Science Foundation of China(52208272,41706080 and 51702328)the Basic Scientific Fund for National Public Research Institutes of China(2020S02 and 2019Y03)+3 种基金the Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-DQC025)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210201)the Strategic Leading Science&Technology Program of the Chinese Academy of Sciences(XDA13040403)the Key Research and Development Program of Shandong Province(Major Scientific and Technological Innovation Project)(2019JZZY020711).
文摘Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
文摘BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases.At present,there is still a lack of effective prevention and treatment methods in clinical practice.Hepatic stellate cell(HSC)plays a key role in liver fibrogenesis.In recent years,the study of liver fibrosis targeting HSC autophagy has become a hot spot in this research field.Angiotensin-converting enzyme 2(ACE2)is a key negative regulator of reninangiotensin system,and its specific molecular mechanism on autophagy and liver fibrosis needs to be further explored.AIM To investigate the effect of ACE2 on hepatic fibrosis in mice by regulating HSC autophagy through the Adenosine monophosphate activates protein kinases(AMPK)/mammalian target of rapamycin(mTOR)pathway.METHODS Overexpression of ACE2 in a mouse liver fibrosis model was induced by injection of liver-specific recombinant adeno-associated virus ACE2 vector(rAAV2/8-ACE2).The degree of liver fibrosis was assessed by histopathological staining and the biomarkers in mouse serum were measured by Luminex multifactor analysis.The number of apoptotic HSCs was assessed by terminal deoxynucleoitidyl transferase-mediated dUTP nick-end labeling(TUNEL)and immunofluorescence staining.Transmission electron microscopy was used to identify the changes in the number of HSC autophagosomes.The effect of ACE2 overexpression on Wu Y et al.ACE2 improves liver fibrosis through autophagy WJG https://www.wjgnet.com 4976 September 7,2023 Volume 29 Issue 33 autophagy-related proteins was evaluated by multicolor immunofluorescence staining.The expression of autophagy-related indicators and AMPK pathway-related proteins was measured by western blotting.RESULTS A mouse model of liver fibrosis was successfully established after 8 wk of intraperitoneal injection of carbon tetrachloride(CCl4).rAAV2/8-ACE2 administration reduced collagen deposition and alleviated the degree of liver fibrosis in mice.The serum levels of platelet-derived growth factor,angiopoietin-2,vascular endothelial growth factor and angiotensin II were decreased,while the levels of interleukin(IL)-10 and angiotensin-(1-7)were increased in the rAAV2/8-ACE2 group.In addition,the expression of alpha-smooth muscle actin,fibronectin,and CD31 was down-regulated in the rAAV2/8-ACE2 group.TUNEL and immunofluorescence staining showed that rAAV2/8-ACE2 injection increased HSC apoptosis.Moreover,rAAV2/8-ACE2 injection notably decreased the number of autophagosomes and the expression of autophagy-related proteins(LC3I,LC3II,Beclin-1),and affected the expression of AMPK pathway-related proteins(AMPK,p-AMPK,p-mTOR).CONCLUSION ACE2 overexpression can inhibit HSC activation and promote cell apoptosis by regulating HSC autophagy through the AMPK/mTOR pathway,thereby alleviating liver fibrosis and hepatic sinusoidal remodeling.
基金the financial supports from the National Key R&D Program of China(2022YFC2105900)National Natural Science Foundation of China(22122801,U22A20426)。
文摘To address the energy crisis and alleviate the rising level of CO_(2)in the atmosphere,various CO_(2)capture and utilization(CCU)technologies have been developed.The use of electro-enzyme coupling systems is a promising strategy for the sustainable production of fuels,chemicals and materials using CO_(2)as the feedstock.In this review,the recent progresses in the development of electro-enzyme coupling systems for the selective reduction of CO_(2)are systematically summarized.We first provide a brief background about the significance and challenges in the direct conversion of CO_(2)into value-added chemicals.Next,we describe the materials and strategies in the design of electrodes,as well as the common enzymes used in the electro-enzyme coupling systems.Then,we focus on the state-of-the-art routes for the electro-enzyme coupling conversion of CO_(2)into a variety of compounds(formate,CO,methanol,C≥2chemicals)by a single enzyme or multienzyme systems.The emerging approaches and materials used for the construction of electro-enzyme coupling systems to enhance the electron transfer efficiency and the catalytic activity/stability are highlighted.The main challenges and perspectives in the integration of enzymatic and electrochemical strategies are also discussed.
基金supported by grants from the National Natural Science Foundation of China(No.81670554 and No.8217113366)the Science and Technology Plan of Wuhan City(No.2020020601012208)+2 种基金the Natural Science Fund for Distinguished Young Scholars of Hubei Province(No.2017CFA068)the National Key R&D Program of China(No.2019YFC0121505)the Science and Technology Innovation Cultivation Fund of Zhongnan Hospital of Wuhan University(No.CXPY2020042).
文摘Objective Ubiquitin conjugate enzyme E2O(UBE2O)is a ubiquitin-conjugating enzyme that has been reported to be involved in tumorigenesis.This study investigated the role of UBE2O in hepatocellular carcinoma(HCC).Methods The expression of UBE2O was detected using qRT-PCR,Western blotting,and immunohistochemical staining.Cell proliferation and Transwell assays were used to detect proliferation,migration,and invasion of HCC cells,respectively.Bioinformatic analysis was performed to analyze the relationship between UBE2O and the clinical features,prognosis,and immune cell infiltration of HCC.Results UBE2O was significantly over-expressed in HCC tissues.High expression of UBE2O was associated with poor tumor grade and poor prognosis.Functional experiments showed that down-regulation of UBE2O inhibited HCC cell proliferation,migration,and invasion.Co-expression gene analysis and gene set enrichment analysis showed that UBE2O was associated with protein hydrolysis,cell cycle,and cancer-related pathways in HCC.The results of immune analysis revealed that the expression of UBE2O was positively correlated with the immune infiltration and expression of immune-related chemokines of HCC.Conclusions UBE2O is significantly correlated with the prognosis of HCC and may be a valuable prognostic biomarker for HCC.
基金supported by the National Natural Science Foundation of China (No.90411020)Major State Basic Research Development Program of China (973 Program)(2002CB412502).
文摘A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.
基金This research was supported by National Basic Research Program of China (No.2002CB412502)Project of Key Pro-gram of the National Science Foundation of China (No.90411020)Natural Science Foundation of China (No.30400051)
文摘A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.
文摘Ara h 2是花生主要过敏原之一,为开发食物中Ara h 2过敏原成分的快速检测方法,减少因误食导致花生过敏事件的发生,该研究采用鼠源单克隆抗体作为捕获抗体、兔源多克隆抗体作为检测抗体,通过棋盘法优化抗体工作浓度,建立了一种检测花生过敏原Ara h 2的间接双抗夹心化学发光酶免疫分析法,并对该方法的灵敏度、准确度、精密度和特异性进行评价。该方法的检出限为1.085 ng/mL,线性范围为3.12~200 ng/mL,添加回收率为78.30%~94.39%,批内和批间变异系数均小于10%,且特异性良好,与其他常见食物过敏原无交叉反应。该方法与相同抗体所建立的间接双抗夹心酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)方法相比,在灵敏度上表现出一定优势。该研究开发的化学发光酶免疫分析法可对花生食品生产过程中和消费前的Ara h 2过敏原成分检测提供可靠的技术支持。
基金supported by grants from the National Natural Science Foundation of China(No.81102692)the Natural Science Foundation of Hubei Province,China(No.JX6B09)the Fundamental Research Funds for the Central Universities,China(No.2015QN203)
文摘Summary: In order to investigate whether Yinchenhao decoction (YCHD) attenuates hepatic fibro- genesis in the bile duct ligation (BDL) model via recovering and restoring the self-regulation and bal- ance of the renin-angiotensin system (RAS), 33 specific-pathogen-free (SPF) male Sprague-Dawley rats with common BDL and scission were randomly divided into five groups as follows: G1, the sham group (n=4); G2, BDL 7-day group (n=5); G3, BDL+YCHD 430 mg/mL (n=8); G4, BDL+losartan 0.65 mg/mL (ARB group, n=8); G5, model group (BDL without any treatment, n=8). YCHD and losartan (10 mL.kgl.day-1) were given by gastric gavage for 16 days following BDL in G3 and G4 groups, respec- tively. The effect of YCHD on liver fibrosis and the detailed molecular mechanisms were assessed by liver function including total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IDBIL), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Histological changes were ob-. served by transmission electron microscopy (TEM) and Masson trichrome staining. Western blotting was used to detect the protein expression level of the renin-angiotensin system (RAS) components in- cluding angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R), ACE2, angio- tensin II (Ang II) as well as transforming growth factor 131 (TGF131). The experimental data were ana- lyzed by principle component analytical method of pattern recognition. The results showed that bio- chemically, serum TBIL, DBIL, IDBIL, ALT and AST levels were markedly increased following BDL as compared with the sham group (P〈0.05). Serum TBIL, IDBIL and DBIL levels in G3 group were dramatically decreased as compared with G5 and G4 groups (P〈0.05). Serum AST level in G3 was sig- nificantly lowered than in G5 group (P〈0.05), but there was no significant difference in ALT among G3, G4 and G5 groups (P〉0.05). Histologically, livers in G3 group showed less hepatocytes necrosis, less bile duct hyperplasia and less collagen formation than in G4 and G5 groups. The protein expression lev- els of ACE2, ACE, Ang II, AT1R and TGF131 in G2, G3 and G4 groups were significantly higher than in sham group (P〈0.05), and lower than in G5 group (P〈0.05). However, the differences among G2, G3 and G4 groups were not significant (P〉0.05). ACE2 protein expression in G3 group was significantly higher than in G2 group (P〈0.05) and there was no significant difference in comparison with G4 group (P〉0.05). Moreover, the protein expression of TGF131 in G3 group was significantly lower than in G5 and G4 groups (P〈0.05). Our findings suggest that the antifibrotic effects of YCHD may be associated with the decreased classical RAS pathway components and TGFI31 downexpression so as to recover and rebuild self-regulation of the RAS by elevating the protein expression of ACE2.
文摘Metal (Me=Fe(III), Mo(VI), Mn(II), Co(II), Ni(II), Zn(II) and Cu(II)) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes (MeHNT) were synthesized and used as mimic-enzyme catalysts to mimic the active group of horseradish peroxidase (HRP). The results showed that Fe-HNT, Mo-HNT are effective catalysts, which have similar catalytic activity as HRP. The sequence of catalytic activities of tested biomimic peroxidas is Mo-HNT > Fe-HNT > Zn-HNT > Ni-HNT > Mn-HNT. Among them, Fe-HNT is used as a mimic-enzyme catalyst in determination of ascorbic acid and glucose by coupling the catalytic reaction of glucose oxidase.
文摘The emergence of coronavirus disease-2019 induced by a newly identified bcoronavirus, namely severe acute respiratory syndrome coronavirus 2(SARSCoV-2) has constituted a public health emergency. Even though it was considered a zoonotic disease, the virus has also spread among humans via respiratory secretions. The expression and distribution of angiotensin converting enzyme type 2(ACE2) in various human organs might also show other possible infection routes. High ACE2 ribonucleic acid expression has been identified in the gastrointestinal tract(GI) indicating its importance as a possible infection pathway of SARS-CoV-2. ACE2 induces viral entry into the host and most importantly has been found to be associated with the function of the gut. Its deficiency has been implicated in several pathologies such as colorectal inflammation. The renin-angiotensin system(RAS) is an essential regulatory cascade operating both at a local tissue level and at the systemic or circulatory level. The RAS may be important in the pathogenesis of chronic liver disease and is associated with the up-regulation of ACE2. Thus, the aim of this review is firstly, the analysis of some important general and genome characteristics of SARS-CoV-2 and secondly, and most importantly, to focus on the utility of ACE2 receptors in both SARS-CoV-2 replication and pathogenesis, especially in the GI tract.
基金supported by grants from the National Natural Science Foundation of China (30901943)the Program for New Century Excellent Talents in University (NCET-04-0437)+1 种基金the E-institute of Shanghai Municipal Education Commission (E03008)the Innovative Research Team in Universities of Shanghai Municipal Education Commission
文摘BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the metabolism of xenobiotics. The products of phase I metabolism are then acted upon by phase II enzymes, including glutathione S-transferases (GSTs). Herbs that inhibit CYPs such as CYP3A4 or that induce GSTs may have the potential to protect against chemical carcinogenesis since the mutagenic effects of carcinogens are often mediated through an excess of CYP-generated reactive intermediates. This study was designed to investigate the effects of salvianolic acid B (Sal B), a pure compound extracted from Radix Salviae Miltiorrhizae, a Chinese herb, on cell proliferation and CYP1A2 and CYP3A4 mRNA expression in the presence or absence of rifampicin, a potent inducer of CYPs and GST protein expression in HepG2 cells. METHODS: HepG2 cells were incubated with different concentrations of Sal B. Cell proliferation was determined by SYTOX-Green nucleic acid staining. CYP3A4 and CYP1A2 mRNA expression was assayed by real-time PCR. GST protein expression was analyzed by Western blotting. RESULTS: Low concentrations of Sal B (0-20 μmol/L) had no significant effects on cell proliferation, while higher concentrations (100-250 μmol/L) significantly inhibited proliferation in a concentration-dependent manner. Ten μmol/L Sal B, but not 1 μmol/L, down-regulated CYP3A4 and CYP1A2 mRNA expression after 24 hours of incubation, whereas both 1 and 10 μmol/L Sal B down-regulated CYP3A4mRNA expression after 96 hours of incubation; moreover, 1 and 10 μmol/L Sal B inhibited CYP3A4 mRNA expression induced by rifampicin. Both 1 μmol/L and 10 μmol/L Sal B increased GST expression. CONCLUSION: Sal B inhibits CYP3A4 and CYP1A2 mRNA expression and induces GST expression in HepG2 cells.
文摘Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome,multiple organ failure,and death.Despite extensive studies on the pathogenicity of SARS-CoV-2,its impact on the hepatobiliary system remains unclear.While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels,the exact source of this damage is not fully understood.Proposed mechanisms for injury include direct cytotoxicity,collateral damage from inflammation,drug-induced liver injury,and ischemia/hypoxia.However,evidence often relies on blood tests with liver enzyme abnormalities.In this comprehensive review,we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients,drawing from liver biopsies,complete autopsies,and in vitro liver analyses.We present evidence of the direct impact of SARS-CoV-2 on the liver,substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes,including mitochondrial swelling,endoplasmic reticulum dilatation,and hepatocyte apoptosis.Additional ly,we describe the diverse liver pathology observed during COVID-19 infection,encompassing necrosis,steatosis,cholestasis,and lobular inflammation.We also discuss the emergence of long-term complications,notably COVID-19-related secondary sclerosing cholangitis.Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is now the most common primary liver malignancy worldwide,and multiple risk factors attribute to the occurrence and development of HCC.Recently,increasing studies suggest that ubiquitinconjugating enzyme E2T(UBE2T)serves as a promising prognostic factor in human cancers,although the molecular mechanism of UBE2T in HCC remains unclear.AIM To investigate the clinical relevance and role of UBE2T in HCC development.METHODS UBE2T expression in HCC tissues from the TCGA database and its association with patient survival were analyzed.A lentivirus-mediated strategy was used to knock down UBE2T in HCC cells.qRT-PCR and Western blot assays were performed to check the effect of UBE2T silencing in HCC cells.Cell growth in vitro and in vivo was analyzed by multiparametric high-content screening and the xenograft tumorigenicity assay,respectively.Cell cycle distribution and apoptosis were determined by flow cytometry.The genes regulated by UBE2T were profiled by microarray assay.RESULTS UBE2T was overexpressed in HCC tissues compared with paired and non-paired normal tissues.High expression of UBE2T predicted a poor overall survival in HCC patients.In vitro,lentivirus-mediated UBE2T knockdown significantly reduced the viability of both SMMC-7721 and BEL-7404 cells.In vivo,the xenograft tumorigenesis of SMMC-7721 cells was largely attenuated by UBE2T silencing.The cell cycle was arrested at G1/S phase in SMMC-7721 and BEL-7404 cells with UBE2T knockdown.Furthermore,apoptosis was increased by UBE2T knockdown.At the molecular level,numerous genes were dysregulated after UBE2T silencing,including IL-1B,FOSL1,PTGS2,and BMP6.CONCLUSION UBE2T plays an important role in cell cycle progression,apoptosis,and HCC development.