To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the reg...This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.展开更多
The microfibril angle of fiber walls is an ultra-mieroscopic feature affecting the performance of wood products. It is therefore essential to get more definitive information to improve selection and utilization. X-ray...The microfibril angle of fiber walls is an ultra-mieroscopic feature affecting the performance of wood products. It is therefore essential to get more definitive information to improve selection and utilization. X-ray diffraction is a rapid method for measuring microfibril angles. In this paper, the variability of microfibril angle in plantation-grown Masson pine was investigated by peak-fitting method. This method was compared with the traditional hand-drawn method, 40% peak height method and half peak height method. X-ray diffraction measurements indicated that the microfibril angle changed as a function of the position in the tree. The mean microfibril angle decreased more gradually as the distance increased from the pith and reached the same level in mature wood. The microfibril angle also seemed to decrease clearly from the base upward. Differences of angle-intensity curves between heartwood and sapwood were also examined.展开更多
The study aimed to discuss the application of CINRAD/SA radar using negative elevation angle mode in observation of tropical cyclone. Firstly, the calculation formula of the lowest detecting height of CINRAD/SA radar ...The study aimed to discuss the application of CINRAD/SA radar using negative elevation angle mode in observation of tropical cyclone. Firstly, the calculation formula of the lowest detecting height of CINRAD/SA radar was educed, and then the application of negative angle mode in Changle Radar Station was introduced. Through analyzing different observing abilities for tropical cyclone detected at different elevation angles, we discussed the limitation of CINRAD/SA radar using negative angle mode, and finally proposed some suggestions on CINRAD/SA radar using nega- tive elevation angle mode to observe tropical cyclone.展开更多
The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary c...The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary condition. However, contact angle is changed according to contact line velocity and time. Hence, for accurate simulation, dynamic contact angle which has various values as time elapsed is adopted. In the present study, the numerical analysis is performed on the droplet spreading phenomena considering dynamic contact angle function which is obtained from single droplet spreading experiment on the flat and bare surface. The CIP (cubic interpolated pseudo-particle) method by Yabe is used for analysis of interface between liquid and gas phases. The numerical results considering contact angle function which newly modeled as time and contact angle are compared with numerical results considering Hoffman's function and experimental data for range of Weber number which are 4.427 and 11.334. In contrast of numerical result considering Hoffman's function, the numerical result shows good agreement with experimental data as time elapsed in contact angle evolution, deformation of droplet spreading radius and height. Indeed, overall, the results display the increasing maximum spreading radius and the decreasing height as Weber numbers increased.展开更多
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金supported by the National Natural Science Foundation of China (Grant No. 41475021)
文摘This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.
基金This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 30371125 and 30400337).
文摘The microfibril angle of fiber walls is an ultra-mieroscopic feature affecting the performance of wood products. It is therefore essential to get more definitive information to improve selection and utilization. X-ray diffraction is a rapid method for measuring microfibril angles. In this paper, the variability of microfibril angle in plantation-grown Masson pine was investigated by peak-fitting method. This method was compared with the traditional hand-drawn method, 40% peak height method and half peak height method. X-ray diffraction measurements indicated that the microfibril angle changed as a function of the position in the tree. The mean microfibril angle decreased more gradually as the distance increased from the pith and reached the same level in mature wood. The microfibril angle also seemed to decrease clearly from the base upward. Differences of angle-intensity curves between heartwood and sapwood were also examined.
文摘The study aimed to discuss the application of CINRAD/SA radar using negative elevation angle mode in observation of tropical cyclone. Firstly, the calculation formula of the lowest detecting height of CINRAD/SA radar was educed, and then the application of negative angle mode in Changle Radar Station was introduced. Through analyzing different observing abilities for tropical cyclone detected at different elevation angles, we discussed the limitation of CINRAD/SA radar using negative angle mode, and finally proposed some suggestions on CINRAD/SA radar using nega- tive elevation angle mode to observe tropical cyclone.
文摘The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary condition. However, contact angle is changed according to contact line velocity and time. Hence, for accurate simulation, dynamic contact angle which has various values as time elapsed is adopted. In the present study, the numerical analysis is performed on the droplet spreading phenomena considering dynamic contact angle function which is obtained from single droplet spreading experiment on the flat and bare surface. The CIP (cubic interpolated pseudo-particle) method by Yabe is used for analysis of interface between liquid and gas phases. The numerical results considering contact angle function which newly modeled as time and contact angle are compared with numerical results considering Hoffman's function and experimental data for range of Weber number which are 4.427 and 11.334. In contrast of numerical result considering Hoffman's function, the numerical result shows good agreement with experimental data as time elapsed in contact angle evolution, deformation of droplet spreading radius and height. Indeed, overall, the results display the increasing maximum spreading radius and the decreasing height as Weber numbers increased.