A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a...A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.展开更多
The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation o...The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.展开更多
In this paper,a new homing guidance method is used to control the flying time and falling angle for guided missiles. Through this approach,it finds the approximate solution to the quadratic equation of time-togo,which...In this paper,a new homing guidance method is used to control the flying time and falling angle for guided missiles. Through this approach,it finds the approximate solution to the quadratic equation of time-togo,which is used for the formula derivation of the flying time control command. In this guidance law design,the acceleration rate control command is adopted. The guidance law is composed of a PN guidance command and a flying time control command. Firstly,it obtains a desired falling angle with accurate guidance. Secondly,it introduces to satisfy the constraint of flying time. The flying time control requires an assumption on the future evolution of missile,which is called time-to-go. To cope with the time-varying speed of missiles,a method of compensating the estimation of time-to-go is presented. The new guidance law is evaluated by using a simulation of typical terminal guidance for rocket-propelled torpedo. The simulation results show that the guidance achieves excellent control performance and exhibits insensitivity to initial trajectory parameter over a widen flight envelope.展开更多
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In additio...The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In addition, the solar radiation pressure force is also related to the solar sail orientation with respect to the sunlight direction. For an ideal flat solar sail, the cone angle between the sail normal and the sunlight direction determines the magnitude and direction of solar radiation pressure force. In general, the cone angle can change from 0° to 90°. However, in practical applications, a large cone angle may reduce the efficiency of solar radiation pressure force and there is a strict requirement on the attitude control. Usually, the cone angle range is restricted less more than an acute angle (for example, not more than 40°) in engineering practice. In this paper, the time-optimal transfer trajectory is designed over a restricted range of the cone angle, and an indirect method is used to solve the two point boundary value problem associated to the optimal control problem. Relevant numerical examples are provided to compare with the case of an unrestricted case, and the effects of different maximum restricted cone angles are discussed. The results indicate that (1) for the condition of a restricted cone-angle range the transfer time is longer than that for the unrestricted case and (2) the optimal transfer time increases as the maximum restricted cone angle decreases.展开更多
Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propos...Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface.展开更多
In the light of the visual angle model(VAM),an improved car-following model considering driver's visual angle,anticipated time and stabilizing driving behavior is proposed so as to investigate how the driver's...In the light of the visual angle model(VAM),an improved car-following model considering driver's visual angle,anticipated time and stabilizing driving behavior is proposed so as to investigate how the driver's behavior factors affect the stability of the traffic flow.Based on the model,linear stability analysis is performed together with bifurcation analysis,whose corresponding stability condition is highly fit to the results of the linear analysis.Furthermore,the time-dependent Ginzburg–Landau(TDGL)equation and the modified Korteweg–de Vries(m Kd V)equation are derived by nonlinear analysis,and we obtain the relationship of the two equations through the comparison.Finally,parameter calibration and numerical simulation are conducted to verify the validity of the theoretical analysis,whose results are highly consistent with the theoretical analysis.展开更多
According to the current understanding, electromagnetic interaction is invariable under time reversal. However, the proof of time reversal symmetry in quantum theory of field has not considered the effects of high ord...According to the current understanding, electromagnetic interaction is invariable under time reversal. However, the proof of time reversal symmetry in quantum theory of field has not considered the effects of high order perturbation normalizations. It is proved in the paper that when the renormalization effect of third order vertex angles process is taken into account, the symmetry of time reversal will be violated in electromagnetic interaction process. Because the magnitude order of symmetry violation is about 10–5, but the precision of current experiments on time reversal in particle physics is about 10–3, this kind of symmetry violation can not be found. The result reveals the micro-origin of asymmetry of time reversal and can be used to solve the famous irreversibility paradox in the evolution processes of macro- material systems.展开更多
This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired...This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51704062)the Fundamental Research Funds for the Central Universities,China(No.N2025019)。
文摘A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
基金supported by the National Natural Science Foundation of China(51679201)
文摘The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.
文摘In this paper,a new homing guidance method is used to control the flying time and falling angle for guided missiles. Through this approach,it finds the approximate solution to the quadratic equation of time-togo,which is used for the formula derivation of the flying time control command. In this guidance law design,the acceleration rate control command is adopted. The guidance law is composed of a PN guidance command and a flying time control command. Firstly,it obtains a desired falling angle with accurate guidance. Secondly,it introduces to satisfy the constraint of flying time. The flying time control requires an assumption on the future evolution of missile,which is called time-to-go. To cope with the time-varying speed of missiles,a method of compensating the estimation of time-to-go is presented. The new guidance law is evaluated by using a simulation of typical terminal guidance for rocket-propelled torpedo. The simulation results show that the guidance achieves excellent control performance and exhibits insensitivity to initial trajectory parameter over a widen flight envelope.
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金supported by the National Natural Science Foundation of China(11272004 and 11302112)China’s Civil Space Funding
文摘The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In addition, the solar radiation pressure force is also related to the solar sail orientation with respect to the sunlight direction. For an ideal flat solar sail, the cone angle between the sail normal and the sunlight direction determines the magnitude and direction of solar radiation pressure force. In general, the cone angle can change from 0° to 90°. However, in practical applications, a large cone angle may reduce the efficiency of solar radiation pressure force and there is a strict requirement on the attitude control. Usually, the cone angle range is restricted less more than an acute angle (for example, not more than 40°) in engineering practice. In this paper, the time-optimal transfer trajectory is designed over a restricted range of the cone angle, and an indirect method is used to solve the two point boundary value problem associated to the optimal control problem. Relevant numerical examples are provided to compare with the case of an unrestricted case, and the effects of different maximum restricted cone angles are discussed. The results indicate that (1) for the condition of a restricted cone-angle range the transfer time is longer than that for the unrestricted case and (2) the optimal transfer time increases as the maximum restricted cone angle decreases.
基金supported by the national project "Geophysical Complex Technologies for Reservoirs and Unconventional Gas Reservoirs"(No.2017 ZX05018-004-003)
文摘Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface.
基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY22G010001,LY20G010004)the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)+1 种基金the National Key Research and Development Program of China-Traffic Modeling,Surveillance and Control with Connected&Automated Vehicles(Grant No.2017YFE9134700)the K.C.Wong Magna Fund in Ningbo University,China。
文摘In the light of the visual angle model(VAM),an improved car-following model considering driver's visual angle,anticipated time and stabilizing driving behavior is proposed so as to investigate how the driver's behavior factors affect the stability of the traffic flow.Based on the model,linear stability analysis is performed together with bifurcation analysis,whose corresponding stability condition is highly fit to the results of the linear analysis.Furthermore,the time-dependent Ginzburg–Landau(TDGL)equation and the modified Korteweg–de Vries(m Kd V)equation are derived by nonlinear analysis,and we obtain the relationship of the two equations through the comparison.Finally,parameter calibration and numerical simulation are conducted to verify the validity of the theoretical analysis,whose results are highly consistent with the theoretical analysis.
文摘According to the current understanding, electromagnetic interaction is invariable under time reversal. However, the proof of time reversal symmetry in quantum theory of field has not considered the effects of high order perturbation normalizations. It is proved in the paper that when the renormalization effect of third order vertex angles process is taken into account, the symmetry of time reversal will be violated in electromagnetic interaction process. Because the magnitude order of symmetry violation is about 10–5, but the precision of current experiments on time reversal in particle physics is about 10–3, this kind of symmetry violation can not be found. The result reveals the micro-origin of asymmetry of time reversal and can be used to solve the famous irreversibility paradox in the evolution processes of macro- material systems.
文摘This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.