Under 5 keV Ar ion bombardment of a 92Mo-100Mo target, we have investigated isotopic angular effects by means of the static and the dynamic Monte Carlo programs. Our calculated results are in quantitative agreement wi...Under 5 keV Ar ion bombardment of a 92Mo-100Mo target, we have investigated isotopic angular effects by means of the static and the dynamic Monte Carlo programs. Our calculated results are in quantitative agreement with the measured and other calculated results. The conclusion consistences among theories. simulations and measurements are also discussed.展开更多
Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. th...Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. the angular extent effect, in micro-motion target images formulated by the polar format algorithm. A micromotion target takes on multiple pairs of paired echoes (PEs) around the true point, and each PE extends for an angle which is exactly equal to the angular extent of the synthetic aperture, regardless of the micromotion frequency. The effect is derived and interpreted by using the characteristics of Bessel functions. Then it is demonstrated by simulation experiments of a target with different micromotion frequencies. The revelation and interpretation of the effect is highly beneficial to micromotion-target SAR image understanding as wel as target recognition.展开更多
New theoretical calculations are performed to investigate the Coulomb proximity and angular momentum effects on multifragmentation picture for84Kr+112,124 Sn collisions at an incident beam energy of 35 Me V/nucleon.Ch...New theoretical calculations are performed to investigate the Coulomb proximity and angular momentum effects on multifragmentation picture for84Kr+112,124 Sn collisions at an incident beam energy of 35 Me V/nucleon.Charge and isotopic distributions and the mean neutron-to-proton ratios of the fragments are reproduced within the microcanonical Markov chain calculations on the basis of Statistical Multifragmentation Model. It is shown that the Coulomb interactions and angular momentum effects are very important to reproduce isotopic composition of nuclear fragments in peripheral heavy-ion collisions at Fermi energies. Our results imply that it is possible to investigate in laboratories the modification of structure parameters of fragments, such as the symmetry energy coefficient, at subnuclear densities in dense environment of other species.展开更多
We investigate the angular dependence of proton-induced single event transient(SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost indep...We investigate the angular dependence of proton-induced single event transient(SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost independent of proton incident angle. However, the proportion of SET events with long duration and high integral charge collection grows significantly with the increasing angle. Monte Carlo simulations demonstrate that the integral cross section of proton incident events with high ionizing energy deposition in the sensitive volume tends to be higher at larger incident angles, which is associated with the angular distribution of proton-induced secondary particles and the geometry of sensitive volume.展开更多
The sputtering yield angular distributions have been calculated based on the ion energy dependence of to- tal sputtering yields for Ni and Mo targets bombarded by low-energy Hg+ ion. The calculated curves show excelle...The sputtering yield angular distributions have been calculated based on the ion energy dependence of to- tal sputtering yields for Ni and Mo targets bombarded by low-energy Hg+ ion. The calculated curves show excellent agreement with the corresponding Wehner’s experimental results of sputtering yield angular distribution. The fact clearly demonstrated the intrinsic relation between the ion energy dependence of total sputtering yields and the sput- tering yield angular distribution. This intrinsic relation had been ignored in Yamamura’s papers (1981,1982) due to some obvious mistakes.展开更多
For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to bet...For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to better match the annular mode field distribution of the vortex beam. The fiber structure was analyzed and calculated by COMSOL Multiphysics 5.4 finite element software, and the characteristics of fiber were analyzed, such as the dispersion, confinement loss, effective mode area and nonlinear coefficient. The results reveal that the photonic crystal fiber structure capable of carrying 50 orbital angular momentum (OAM) modes at the wavelength of 1.15 to 2.0 μm (850 nm). The effective refractive index difference Δneff between vector modes can reach 1 × 10-3, and larger difference can effectively separate the vector modes and improve the transmission performance of OAM modes. Moreover, the fiber has good performance, such as flat dispersion distribution of the low-order modes, low confinement loss below 10-9 dB·m-1, large effective mode field area and small nonlinear coefficient in the 850 nm wavelength range. Therefore, this fiber structure can be applied to the high-capacity communication system of fiber multiplexing OAM. In addition, the good characteristics of this fiber structure are of great significance for the transmission of vortex beam in fiber.展开更多
The reasons of angular photon distribution occurrence at electron-positron annihilation are considered. It is shown that angular photon distribution is consequence of Doppler’s effect in the reference frame of the el...The reasons of angular photon distribution occurrence at electron-positron annihilation are considered. It is shown that angular photon distribution is consequence of Doppler’s effect in the reference frame of the electron and positron mass center. In the reference frame bound with moving electron the angular photon distribution is absent. But it is replaced by the Doppler’s shift of photons frequencies. The received results are applied to the analysis of a positron-emission tomograph work.展开更多
文摘Under 5 keV Ar ion bombardment of a 92Mo-100Mo target, we have investigated isotopic angular effects by means of the static and the dynamic Monte Carlo programs. Our calculated results are in quantitative agreement with the measured and other calculated results. The conclusion consistences among theories. simulations and measurements are also discussed.
基金supported by the National Natural Science Foundationof China(6130214861101182)
文摘Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. the angular extent effect, in micro-motion target images formulated by the polar format algorithm. A micromotion target takes on multiple pairs of paired echoes (PEs) around the true point, and each PE extends for an angle which is exactly equal to the angular extent of the synthetic aperture, regardless of the micromotion frequency. The effect is derived and interpreted by using the characteristics of Bessel functions. Then it is demonstrated by simulation experiments of a target with different micromotion frequencies. The revelation and interpretation of the effect is highly beneficial to micromotion-target SAR image understanding as wel as target recognition.
基金Supported by Turkish Scientific and Technical Research Council(No.113F058)Scientific Research Coordination of Selcuk University(BAP)(No.SU-2014/14701490)Helmholtz International Center for FAIR(LOEWE program)
文摘New theoretical calculations are performed to investigate the Coulomb proximity and angular momentum effects on multifragmentation picture for84Kr+112,124 Sn collisions at an incident beam energy of 35 Me V/nucleon.Charge and isotopic distributions and the mean neutron-to-proton ratios of the fragments are reproduced within the microcanonical Markov chain calculations on the basis of Statistical Multifragmentation Model. It is shown that the Coulomb interactions and angular momentum effects are very important to reproduce isotopic composition of nuclear fragments in peripheral heavy-ion collisions at Fermi energies. Our results imply that it is possible to investigate in laboratories the modification of structure parameters of fragments, such as the symmetry energy coefficient, at subnuclear densities in dense environment of other species.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775167 and 12105252)the Natural Science Foundation of Chongqing,China(Grant No.cstc2021jcyj-bsh0246)。
文摘We investigate the angular dependence of proton-induced single event transient(SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost independent of proton incident angle. However, the proportion of SET events with long duration and high integral charge collection grows significantly with the increasing angle. Monte Carlo simulations demonstrate that the integral cross section of proton incident events with high ionizing energy deposition in the sensitive volume tends to be higher at larger incident angles, which is associated with the angular distribution of proton-induced secondary particles and the geometry of sensitive volume.
基金Supported in part by the Major Scientific Research Project Fund from the Educational Bureau of Anhui Province China in 2005
文摘The sputtering yield angular distributions have been calculated based on the ion energy dependence of to- tal sputtering yields for Ni and Mo targets bombarded by low-energy Hg+ ion. The calculated curves show excellent agreement with the corresponding Wehner’s experimental results of sputtering yield angular distribution. The fact clearly demonstrated the intrinsic relation between the ion energy dependence of total sputtering yields and the sput- tering yield angular distribution. This intrinsic relation had been ignored in Yamamura’s papers (1981,1982) due to some obvious mistakes.
文摘For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to better match the annular mode field distribution of the vortex beam. The fiber structure was analyzed and calculated by COMSOL Multiphysics 5.4 finite element software, and the characteristics of fiber were analyzed, such as the dispersion, confinement loss, effective mode area and nonlinear coefficient. The results reveal that the photonic crystal fiber structure capable of carrying 50 orbital angular momentum (OAM) modes at the wavelength of 1.15 to 2.0 μm (850 nm). The effective refractive index difference Δneff between vector modes can reach 1 × 10-3, and larger difference can effectively separate the vector modes and improve the transmission performance of OAM modes. Moreover, the fiber has good performance, such as flat dispersion distribution of the low-order modes, low confinement loss below 10-9 dB·m-1, large effective mode field area and small nonlinear coefficient in the 850 nm wavelength range. Therefore, this fiber structure can be applied to the high-capacity communication system of fiber multiplexing OAM. In addition, the good characteristics of this fiber structure are of great significance for the transmission of vortex beam in fiber.
文摘The reasons of angular photon distribution occurrence at electron-positron annihilation are considered. It is shown that angular photon distribution is consequence of Doppler’s effect in the reference frame of the electron and positron mass center. In the reference frame bound with moving electron the angular photon distribution is absent. But it is replaced by the Doppler’s shift of photons frequencies. The received results are applied to the analysis of a positron-emission tomograph work.