In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was pre...In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.展开更多
The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneousl...The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.展开更多
In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc...In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from...On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.展开更多
For fault diagnosis, signal singularity and irregularity discontinuity fraction are very significant characteristics of signal. The discontinuity of output signal represents a system fault . In an angular measuring sy...For fault diagnosis, signal singularity and irregularity discontinuity fraction are very significant characteristics of signal. The discontinuity of output signal represents a system fault . In an angular measuring system, function transformer uses two D/A convertors, output circuit fault of a D/A convertor brings about discontinuity of one phase input voltage amplitude of inductosyn, results in a system error exceeding the allowable error and reduces the system accuracy. This is the reason why discontinuity is detected. Fourier transform has no resolution ability in angular domain, but wavelet can analyse signal in angular and frequency domains. So we decompose the error signal of angular measuring system by wavelet, detect the signal singularity at high frequency layer and find out the accurate position of it.展开更多
Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to resear...Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.展开更多
Silver(Ag)plasma has been generated by employing Nd:YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak s...Silver(Ag)plasma has been generated by employing Nd:YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak signals of fast and slow Ag plasma ions have been identified.Both energy and flux of fast and slow ions tend to increase with increasing irradiance from 7 GW cm-2 to 17.9 GW cm-2 at all distances of FC from the target surface.Similarly a decreasing trend of energies and flux of ions has been observed with increasing distance of FC from the target.The maximum value of flux of the fast component is21.2×10^(10) cm^(-2),whereas for slow ions the maximum energy and flux values are 8.8 keV,8.2×10^(10) cm^(-2) respectively.For the analysis of plume expansion dynamics,the angular distribution of ion flux measurement has also been performed.The overall analysis of both spatial and angular distributions of Ag ions revealed that the maximum flux of Ag plasma ions has been observed at an optimal angle of~15°.In order to confirm the ion acceleration by ambipolar field,the self-generated electric field(SGEF)measurements have also been performed by electric probe;these SGEF measurements tend to increase by increasing laser irradiance.The maximum value of 232 V m^(-1) has been obtained at a maximum laser irradiance of 17.9 GW cm^(-2).展开更多
We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his inf...We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.展开更多
文摘In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.
基金Project supported by the Jiangsu Provincial Natural Science Foundation,China(Grant Nos.BK20170800 and BK20160794)the National Natural Science Foundation of China(Grant No.51606095)
文摘The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)+7 种基金the Natural Science Research Foundation for Universities of Jiangsu Province of China(Grant No.11KJA510002)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network TechnologyMinistry of EducationChina(Grant No.NYKL2015011)the Innovation Program of Graduate Education of Jiangsu ProvinceChina(Grant No.KYLX0810)partially supported by Qinglan Project of Jiangsu ProvinceChina
文摘In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金Hong Lai has been supported by the National Natural Science Foundation of China(No.61702427)the Chongqing innovation project(No.cx2018076)+1 种基金the Fundamental Research Funds for the Central Universities(XDJK2018C048)the financial support in part by the 1000-Plan of Chongqing by Southwest University(No.SWU116007)。
文摘On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.
文摘For fault diagnosis, signal singularity and irregularity discontinuity fraction are very significant characteristics of signal. The discontinuity of output signal represents a system fault . In an angular measuring system, function transformer uses two D/A convertors, output circuit fault of a D/A convertor brings about discontinuity of one phase input voltage amplitude of inductosyn, results in a system error exceeding the allowable error and reduces the system accuracy. This is the reason why discontinuity is detected. Fourier transform has no resolution ability in angular domain, but wavelet can analyse signal in angular and frequency domains. So we decompose the error signal of angular measuring system by wavelet, detect the signal singularity at high frequency layer and find out the accurate position of it.
文摘Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.
文摘Silver(Ag)plasma has been generated by employing Nd:YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak signals of fast and slow Ag plasma ions have been identified.Both energy and flux of fast and slow ions tend to increase with increasing irradiance from 7 GW cm-2 to 17.9 GW cm-2 at all distances of FC from the target surface.Similarly a decreasing trend of energies and flux of ions has been observed with increasing distance of FC from the target.The maximum value of flux of the fast component is21.2×10^(10) cm^(-2),whereas for slow ions the maximum energy and flux values are 8.8 keV,8.2×10^(10) cm^(-2) respectively.For the analysis of plume expansion dynamics,the angular distribution of ion flux measurement has also been performed.The overall analysis of both spatial and angular distributions of Ag ions revealed that the maximum flux of Ag plasma ions has been observed at an optimal angle of~15°.In order to confirm the ion acceleration by ambipolar field,the self-generated electric field(SGEF)measurements have also been performed by electric probe;these SGEF measurements tend to increase by increasing laser irradiance.The maximum value of 232 V m^(-1) has been obtained at a maximum laser irradiance of 17.9 GW cm^(-2).
基金Supported by the National Natural Science Foundation of China(No.61271238)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20123223110003)+1 种基金the University Natural Science Research Foundation of Jiangsu Province(No.11KJA510002)the Open Research Fund of National Laboratory of Solid State Microstructures(M25020,M25022)
文摘We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.