A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the exci...A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.展开更多
基金This work is supported by the National Nature Science Foundation of China!(No. 69678003)
文摘A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.