Because of the lack of suitable animal models adapted to high vacuum stress in the low-energy ion implantation system, the bio-effects ion irradiation with an energy less than 50 keV on multi-cellular animal individua...Because of the lack of suitable animal models adapted to high vacuum stress in the low-energy ion implantation system, the bio-effects ion irradiation with an energy less than 50 keV on multi-cellular animal individuals have never been investigated so far. The nematode Caenorhabditis elegans has proved to be an excellent animal model used for the study of a broad spectrum of biological issues. The purpose of this work was to investigate the viability of this animal under ion irradiation. We studied the protection effects of glycerol and trehalose on the enhancement of nematodes' ability to bear the vacuum stress. The results showed that the survival of the nematodes was enhanced remarkably under long and slow desiccation, even without glycerol and trehalose. 159 glycerol showed a better anti-vacuum stress effect on the nematodes than trehalose did under short-time desiccation. Low-temperature pre-treatment or post-treatment of the samples had no obvious effect on the survival scored after argon ion irradiation. Moreover, little effect was induced by 15% glycerol- and vacuum-exposure on germ cell apoptosis, compared to the untreated control sample. It issuggested that such treatment would provide relatively low background for genotoxic evaluations with ion irradiation.展开更多
文摘Because of the lack of suitable animal models adapted to high vacuum stress in the low-energy ion implantation system, the bio-effects ion irradiation with an energy less than 50 keV on multi-cellular animal individuals have never been investigated so far. The nematode Caenorhabditis elegans has proved to be an excellent animal model used for the study of a broad spectrum of biological issues. The purpose of this work was to investigate the viability of this animal under ion irradiation. We studied the protection effects of glycerol and trehalose on the enhancement of nematodes' ability to bear the vacuum stress. The results showed that the survival of the nematodes was enhanced remarkably under long and slow desiccation, even without glycerol and trehalose. 159 glycerol showed a better anti-vacuum stress effect on the nematodes than trehalose did under short-time desiccation. Low-temperature pre-treatment or post-treatment of the samples had no obvious effect on the survival scored after argon ion irradiation. Moreover, little effect was induced by 15% glycerol- and vacuum-exposure on germ cell apoptosis, compared to the untreated control sample. It issuggested that such treatment would provide relatively low background for genotoxic evaluations with ion irradiation.