期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pore Pressure Accumulation of Anisotropically Consolidated Soft Clay Subjected to Complex Loads Under Different Stress Paths 被引量:1
1
作者 WANG Yu-ke WAN Yong-shuai +3 位作者 RUAN Hang YU Xiang SHAO Jing-gan REN De-bo 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期465-474,共10页
Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft c... Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA).The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation)and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied.The test results show that,during pure principal stress axis rotation,the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress;the values of major principal stress anglesα,corresponding to the peak value of the pore water pressure in a certain cycle,are different with different initial consolidation angles;the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b.With the fixed initial consolidation angle ζ,the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values.With the increase of cycles,the difference value of pore water pressure between b=0 and b=1 in each cycle increases gradually with different initial consolidation angles ζ.While with different initial consolidation anglesζ,the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1;the variation of maximum pore water pressure withζis significantly affected by the value of b;the value of maximum pore water pressure increases with the cycle number increases under all test conditions,but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b. 展开更多
关键词 anisotropical consolidation pure principal stress rotation soft clay pore water pressure
下载PDF
Stiffness Degradation of Undisturbed Saturated Soft Clay in the Yangtze Estuary Under Complex Stress Conditions 被引量:6
2
作者 栾茂田 刘功勋 +1 位作者 王忠涛 郭莹 《China Ocean Engineering》 SCIE EI 2010年第3期523-538,共16页
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ... Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined. 展开更多
关键词 undisturbed saturated soft clay complex stress condition stiffness degradation three-directional anisotropic consolidation continuous rotation of principal stress axes cyclic coupling shear test cyclic torsional shear test
下载PDF
Effect of Initial Principal Stress Direction on the Dynamic Characteristics of Carbonate Sand 被引量:1
3
作者 Yu Haizhen Zhao Wenguang +2 位作者 Wang Ren Li Jianguo He Yang 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期340-344,共5页
The dynamic characteristics of carbonate sand under wave loads are very important for constructions on the ocean floor. The initial principal stress direction has been known to exert some influence on the dynamic char... The dynamic characteristics of carbonate sand under wave loads are very important for constructions on the ocean floor. The initial principal stress direction has been known to exert some influence on the dynamic characteristics of sand during cyclic loading. In an effort to investigate this aspect of the problem, several series of cyclic undrained tests were carried out on a saturated and loose sample of carbonate sand using a geotechnical static and dynamic universal triaxial shear apparatus. In this test apparatus, a hollow cylindrical sand specimen is subjected to a simultaneous application of both triaxial and torsional modes of shear stresses, which brings about the continuous rotation of principal stress axes. The test results indicated that the initial principal stress direction has a considerable influence on the dy- namic strength of loose carbonate sand and with the increase of initial orientation of principal stress, dynamic strength will be reduced, the cyclic pore pressure increased, but the residual pore pressure reduced. 展开更多
关键词 triaxial-and-torsional coupling cyclic shear tests carbonate sand initial principal stressdirection cyclic strength anisotropic consolidation.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部