In engineering practice,analysis of interfacial thermal stresses in composites is a crucial task for assuring structural integrity when sever environmental temperature changes under operations.In this article,the dire...In engineering practice,analysis of interfacial thermal stresses in composites is a crucial task for assuring structural integrity when sever environmental temperature changes under operations.In this article,the directly transformed boundary integrals presented previously for treating generally anisotropic thermoelasticity in two-dimension are fully regularized by a semi-analytical approach for modeling thin multi-layers of anisotropic/isotropic composites,subjected to general thermal loads with boundary conditions prescribed.In this process,an additional difficulty,not reported in the literature,arises due to rapid fluctuation of an integrand in the directly transformed boundary integral equation.In conventional analysis,thin adhesives are usually neglected due to modeling difficulties.A major concern arises regarding the modeling error caused by such negligence of the thin adhesives.For investigating the effect of the thin adhesives considered,the regularized integral equation is applied for analyzing interfacial stresses in multiply bonded composites when thin adhesives are considered.Since all integrals are completely regularized,very accurate integration values can be still obtained no matter how the source point is close to the integration element.Comparisons are made for some examples when the thin adhesives are considered or neglected.Truly,this regularization task has laid sound fundamentals for the boundary element method to efficiently analyze the interfacial thermal stresses in 2D thin multiply bonded anisotropic composites.展开更多
The purpose of this research is to analyze and compare stress distribution patterns around dental implant made of pure titanium and yttrium-partial stabilized zirconia (YPSZ) in anisotropic versus isotropic finite e...The purpose of this research is to analyze and compare stress distribution patterns around dental implant made of pure titanium and yttrium-partial stabilized zirconia (YPSZ) in anisotropic versus isotropic finite element method under vertical and oblique loads. Although the properties of implant and crown were changed, similar stress distribution and close stress level were observed in two different implant finite element models. The stress values were a little lower in the YPSZ model. In the bone, anisotropy increased the stress values by 30%- 70% in the isotropic cases. The YPSZ implant could be more valuable choice for implant because of esthetic requirement. Anisotropy had subtle, yet significant effects on the stress level.展开更多
The method of fundamental solutions(MFS)is a boundary-type and truly meshfree method,which is recognized as an efficient numerical tool for solving boundary value problems.The geometrical shape,boundary conditions,and...The method of fundamental solutions(MFS)is a boundary-type and truly meshfree method,which is recognized as an efficient numerical tool for solving boundary value problems.The geometrical shape,boundary conditions,and applied loads can be easily modeled in the MFS.This capability makes the MFS particularly suitable for shape optimization,moving load,and inverse problems.However,it is observed that the standard MFS lead to inaccurate solutions for some elastostatic problems with stress concentration and/or highly anisotropic materials.In thiswork,by a numerical study,the important parameters,which have significant influence on the accuracy of the MFS for the analysis of two-dimensional anisotropic elastostatic problems,are investigated.The studied parameters are the degree of anisotropy of the problem,the ratio of the number of collocation points to the number of source points,and the distance between main and pseudo boundaries.It is observed that as the anisotropy of the material increases,there will be more errors in the results.It is also observed that for simple problems,increasing the distance between main and pseudo boundaries enhances the accuracy of the results;however,it is not the case for complicated problems.Moreover,it is concluded that more collocation points than source points can significantly improve the accuracy of the results.展开更多
The theory of small deformation superimposed on a largedeformation of an elastic solid is used to investigate the bucklingof anisotropic elastic plate under uniaxial compression. The bucklingdirec- tion (th direction ...The theory of small deformation superimposed on a largedeformation of an elastic solid is used to investigate the bucklingof anisotropic elastic plate under uniaxial compression. The bucklingdirec- tion (th direction of buckling direction is obtained. It isfound that the out-of-plane buckling of anisotropic elastic plate ispossible and both buckling conditions for flexural and extensionalmodes are presented.展开更多
The cavitation problem in a solid sphere composed of an incompressible anisotropic hyper elastic material under a uniform radial tensile dead load was examined. A new analytical solution was obtained. The stress cont...The cavitation problem in a solid sphere composed of an incompressible anisotropic hyper elastic material under a uniform radial tensile dead load was examined. A new analytical solution was obtained. The stress contributions were given and the jumping and concentration of stresses were discussed. The stability of solutions and the effect of the degree of anisotropy of the material were analyzed.展开更多
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displac...The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).展开更多
Out-of-plane buckling of anisotropic elastic plate subjected to asimple shear is investigated. From exact 3-D equilibrium conditionsof anisotropic elastic body with a plane of elastic symmetry atcritical Configuration...Out-of-plane buckling of anisotropic elastic plate subjected to asimple shear is investigated. From exact 3-D equilibrium conditionsof anisotropic elastic body with a plane of elastic symmetry atcritical Configuration, the equation for buckling direction (bucklingwave direction) parameter is derived and the Shape functions ofpossible buckling modes are obtained. The traction free boundaryconditions which must Hold on the upper and lower surfaces of platelead to a linear eigenvalue problem whose nontrivial solutions Arejust the possible buckling modes for the plate.展开更多
Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cra...Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.展开更多
First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a0 and c0/a0, elastic constants Cu, bulk modul...First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a0 and c0/a0, elastic constants Cu, bulk modulus B0, and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. The enthalpy calculations predict that NbN undergoes phase transition from NaCl-type to NiAs-type structure at 13.4 GPa with a volume collapse of about 4.0% and from AsNi-type to CW-type structure at 26.5 GPa with a volume collapse of about 7.0%. Among the four types of structures, CW-type is the most stable structure. The elastic properties are analyzed on the basis of the calculated elastic constants. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. The longitudinal and shear-wave velocities, Vr, Vs and V increase with increasing pressure, respectively. The Debye temperature OD increases monotonically with increasing pressure except for NiAs-type structure. Both the longitudinal velocity and the shear-wave velocity increase with pressure for wave vector along all the propagation directions, except for VTA([100]) and VTA[001]([110]) with NaCl structure and VTA[001]([100]) with the other three types of structures.展开更多
An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key fe...An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.展开更多
Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbi...Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.展开更多
The structural, mechanical, elastic anisotropic, and electronic properties of the monoclinic phase of m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are systematically investigated in this work. The calculated results of ...The structural, mechanical, elastic anisotropic, and electronic properties of the monoclinic phase of m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are systematically investigated in this work. The calculated results of lattice parameters, elastic constants and elastic moduli of m-Si3N4 and m-Ge3N4 are in good agreement with previous theoretical results. Using the Voigt-Reuss-Hill method, elastic properties such as bulk modulus B and shear modulus G are investigated. The calculated ratio of B/G and Poissons ratio v show that only m-SiGe2N4 should belong to a ductile material in nature. In addition, m-SiGe2N4 possesses the largest anisotropic shear modulus, Youngs modulus, Poissons ratio, and percentage of elastic anisotropies for bulk modulus AB and shear modulus AG, and universal anisotropic index AU among m-SixGe3-xN4 (x=0, 1, 2, 3.) The results of electronic band gap reveal that m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are all direct and wide band gap semiconducting materials.展开更多
In this paper, the first fundamental problem for an infinite elastic plane bonded by different anisotropic materials with cracks of arbitrary shape is discussed. The problem is reduced to a certain system of singular ...In this paper, the first fundamental problem for an infinite elastic plane bonded by different anisotropic materials with cracks of arbitrary shape is discussed. The problem is reduced to a certain system of singular integral equations with several undetermined constants, which is proved to be uniquely solvable when these constants are suitably and uniquely chosen.展开更多
Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly...Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials.In this article,we review the most recent understandings on the underlying mechanisms(anharmonic phonon vibration,magnetovolume effect,ferroelectrorestriction and charge transfer)of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects.Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures,NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed.Based on the data documented,some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.展开更多
The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related ...The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related to slab subduction. Its equation of state has been investigated here at ambient temperature up to about 25 GPa by using a diamond-anvil cell and synchrotron Xray radiation. Its P-V data, fitted to the third-order Birch-Murnaghan equation, yield an isothermal bulk modulus (KT) of 185 (9) GPa and first pressure derivative ( KT^t ) of 7.2 (12). If KT^t is fixed at 4, file derived Kr is 212 (4) GPa. Additionally, the CAS phase is strongly elastically anisotropic, with its a-axis direction much less compressible than c-axis direction: Kr-a : Kr-c = 2.19.展开更多
The combination of ultrahigh strength and excellent ductility of nanotwinned materials is rooted in the interaction between dislocations and twin boundaries(TBs).Quantifying the interaction between TBs and dislocation...The combination of ultrahigh strength and excellent ductility of nanotwinned materials is rooted in the interaction between dislocations and twin boundaries(TBs).Quantifying the interaction between TBs and dislocations not only offers fresh perspectives of designing materials with high strength and ductility,but also becomes the cornerstone of multiscale modeling of materials with TBs.In this work,an atomcontinuum coupling model was adopted to quantitatively investigate the interaction between dislocations and TBs.The simulation shows that the dislocation-TB interaction is much weaker than the interaction between dislocations at the same distance.Simulation of the early stage of dislocation pileups further verifies that the experimentally observed repulsive forces are essentially from the dislocations or kink-like steps on TBs.The interaction between TBs and dislocations with different Burgers vectors was demonstrated referring to the elastic theory of dislocations.With the intrinsic interaction between dislocations and TBs being clarified,this work will promote further development of the multiscale simulation methods,such as discrete dislocation dynamics or phase-field method,of materials with TBs by providing a quantitative description of the interactions between TBs and dislocations.展开更多
Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the ana...Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented.As the adjacent reinforcement layers with wound angle have different radii,the single reinforcement layer shows the effect of tensile-shear coupling.Moreover,the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method.展开更多
基金The financial support provided from the Ministry of Science and Technology of Taiwan is greatly appreciated by the authors(MOST 108-2221-E-006-186).
文摘In engineering practice,analysis of interfacial thermal stresses in composites is a crucial task for assuring structural integrity when sever environmental temperature changes under operations.In this article,the directly transformed boundary integrals presented previously for treating generally anisotropic thermoelasticity in two-dimension are fully regularized by a semi-analytical approach for modeling thin multi-layers of anisotropic/isotropic composites,subjected to general thermal loads with boundary conditions prescribed.In this process,an additional difficulty,not reported in the literature,arises due to rapid fluctuation of an integrand in the directly transformed boundary integral equation.In conventional analysis,thin adhesives are usually neglected due to modeling difficulties.A major concern arises regarding the modeling error caused by such negligence of the thin adhesives.For investigating the effect of the thin adhesives considered,the regularized integral equation is applied for analyzing interfacial stresses in multiply bonded composites when thin adhesives are considered.Since all integrals are completely regularized,very accurate integration values can be still obtained no matter how the source point is close to the integration element.Comparisons are made for some examples when the thin adhesives are considered or neglected.Truly,this regularization task has laid sound fundamentals for the boundary element method to efficiently analyze the interfacial thermal stresses in 2D thin multiply bonded anisotropic composites.
文摘The purpose of this research is to analyze and compare stress distribution patterns around dental implant made of pure titanium and yttrium-partial stabilized zirconia (YPSZ) in anisotropic versus isotropic finite element method under vertical and oblique loads. Although the properties of implant and crown were changed, similar stress distribution and close stress level were observed in two different implant finite element models. The stress values were a little lower in the YPSZ model. In the bone, anisotropy increased the stress values by 30%- 70% in the isotropic cases. The YPSZ implant could be more valuable choice for implant because of esthetic requirement. Anisotropy had subtle, yet significant effects on the stress level.
基金The first author would like to acknowledge the support received from the Vice Chancellor of Research at Shiraz University under Grant No.99GRC1M1820.
文摘The method of fundamental solutions(MFS)is a boundary-type and truly meshfree method,which is recognized as an efficient numerical tool for solving boundary value problems.The geometrical shape,boundary conditions,and applied loads can be easily modeled in the MFS.This capability makes the MFS particularly suitable for shape optimization,moving load,and inverse problems.However,it is observed that the standard MFS lead to inaccurate solutions for some elastostatic problems with stress concentration and/or highly anisotropic materials.In thiswork,by a numerical study,the important parameters,which have significant influence on the accuracy of the MFS for the analysis of two-dimensional anisotropic elastostatic problems,are investigated.The studied parameters are the degree of anisotropy of the problem,the ratio of the number of collocation points to the number of source points,and the distance between main and pseudo boundaries.It is observed that as the anisotropy of the material increases,there will be more errors in the results.It is also observed that for simple problems,increasing the distance between main and pseudo boundaries enhances the accuracy of the results;however,it is not the case for complicated problems.Moreover,it is concluded that more collocation points than source points can significantly improve the accuracy of the results.
基金the National Natural Science Foundation of China(No.19772032)
文摘The theory of small deformation superimposed on a largedeformation of an elastic solid is used to investigate the bucklingof anisotropic elastic plate under uniaxial compression. The bucklingdirec- tion (th direction of buckling direction is obtained. It isfound that the out-of-plane buckling of anisotropic elastic plate ispossible and both buckling conditions for flexural and extensionalmodes are presented.
文摘The cavitation problem in a solid sphere composed of an incompressible anisotropic hyper elastic material under a uniform radial tensile dead load was examined. A new analytical solution was obtained. The stress contributions were given and the jumping and concentration of stresses were discussed. The stability of solutions and the effect of the degree of anisotropy of the material were analyzed.
文摘The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).
基金the National Natural Science Foundation of China(No.19772032)
文摘Out-of-plane buckling of anisotropic elastic plate subjected to asimple shear is investigated. From exact 3-D equilibrium conditionsof anisotropic elastic body with a plane of elastic symmetry atcritical Configuration, the equation for buckling direction (bucklingwave direction) parameter is derived and the Shape functions ofpossible buckling modes are obtained. The traction free boundaryconditions which must Hold on the upper and lower surfaces of platelead to a linear eigenvalue problem whose nontrivial solutions Arejust the possible buckling modes for the plate.
文摘Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.
文摘First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a0 and c0/a0, elastic constants Cu, bulk modulus B0, and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. The enthalpy calculations predict that NbN undergoes phase transition from NaCl-type to NiAs-type structure at 13.4 GPa with a volume collapse of about 4.0% and from AsNi-type to CW-type structure at 26.5 GPa with a volume collapse of about 7.0%. Among the four types of structures, CW-type is the most stable structure. The elastic properties are analyzed on the basis of the calculated elastic constants. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. The longitudinal and shear-wave velocities, Vr, Vs and V increase with increasing pressure, respectively. The Debye temperature OD increases monotonically with increasing pressure except for NiAs-type structure. Both the longitudinal velocity and the shear-wave velocity increase with pressure for wave vector along all the propagation directions, except for VTA([100]) and VTA[001]([110]) with NaCl structure and VTA[001]([100]) with the other three types of structures.
基金supported by the Key Project of the National Natural Science Foundation of China(10932003)Project of Chinese National Programs for Fundamental Research and Development(2012CB619603 and 2010CB832700)"04" Great Project of Ministry of Industrialization and Information of China (2011ZX04001-21)
文摘An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.
基金supports from the National Natural Science Foundation of China(11402133 and 11502128)
文摘Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.
基金Project supported by the National Natural Science Foundation of China(Grant No.61601468)the Fundamental Research Funds for the Central Universities,China(Grant No.3122014C024)the Fund for Scholars of Civil Aviation University of China(Grant No.2013QD06X)
文摘The structural, mechanical, elastic anisotropic, and electronic properties of the monoclinic phase of m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are systematically investigated in this work. The calculated results of lattice parameters, elastic constants and elastic moduli of m-Si3N4 and m-Ge3N4 are in good agreement with previous theoretical results. Using the Voigt-Reuss-Hill method, elastic properties such as bulk modulus B and shear modulus G are investigated. The calculated ratio of B/G and Poissons ratio v show that only m-SiGe2N4 should belong to a ductile material in nature. In addition, m-SiGe2N4 possesses the largest anisotropic shear modulus, Youngs modulus, Poissons ratio, and percentage of elastic anisotropies for bulk modulus AB and shear modulus AG, and universal anisotropic index AU among m-SixGe3-xN4 (x=0, 1, 2, 3.) The results of electronic band gap reveal that m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are all direct and wide band gap semiconducting materials.
文摘In this paper, the first fundamental problem for an infinite elastic plane bonded by different anisotropic materials with cracks of arbitrary shape is discussed. The problem is reduced to a certain system of singular integral equations with several undetermined constants, which is proved to be uniquely solvable when these constants are suitably and uniquely chosen.
基金This work was supported by the National Natural Science Foundation of China(Nos.11874328,11774078,and 21905252)China Postdoctoral Science Foundation(No.2019M652558).
文摘Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials.In this article,we review the most recent understandings on the underlying mechanisms(anharmonic phonon vibration,magnetovolume effect,ferroelectrorestriction and charge transfer)of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects.Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures,NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed.Based on the data documented,some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.
基金supported by National Natural Science Founda-tion of China (Grant Nos. 40872033, 40821002)Fundamental Research Funds for the Central Universities to Liu Xi
文摘The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related to slab subduction. Its equation of state has been investigated here at ambient temperature up to about 25 GPa by using a diamond-anvil cell and synchrotron Xray radiation. Its P-V data, fitted to the third-order Birch-Murnaghan equation, yield an isothermal bulk modulus (KT) of 185 (9) GPa and first pressure derivative ( KT^t ) of 7.2 (12). If KT^t is fixed at 4, file derived Kr is 212 (4) GPa. Additionally, the CAS phase is strongly elastically anisotropic, with its a-axis direction much less compressible than c-axis direction: Kr-a : Kr-c = 2.19.
基金financially supported by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(Grant No.HZQB-KCZYB-2020030)the National Natural Science Foundation of China(Grant Nos.12072062,11772082,12072061)+2 种基金the Liaoning Revitalization Talents Program(Grant No.XLYC1807193)Key Research and Development Project of Liaoning Province(Grant No.2020JH2/10500003)the Fundamental Research Funds for the Central Universities(Grant No.DUT20LAB203)。
文摘The combination of ultrahigh strength and excellent ductility of nanotwinned materials is rooted in the interaction between dislocations and twin boundaries(TBs).Quantifying the interaction between TBs and dislocations not only offers fresh perspectives of designing materials with high strength and ductility,but also becomes the cornerstone of multiscale modeling of materials with TBs.In this work,an atomcontinuum coupling model was adopted to quantitatively investigate the interaction between dislocations and TBs.The simulation shows that the dislocation-TB interaction is much weaker than the interaction between dislocations at the same distance.Simulation of the early stage of dislocation pileups further verifies that the experimentally observed repulsive forces are essentially from the dislocations or kink-like steps on TBs.The interaction between TBs and dislocations with different Burgers vectors was demonstrated referring to the elastic theory of dislocations.With the intrinsic interaction between dislocations and TBs being clarified,this work will promote further development of the multiscale simulation methods,such as discrete dislocation dynamics or phase-field method,of materials with TBs by providing a quantitative description of the interactions between TBs and dislocations.
基金the National Natural Science Foundation of China (No. 50439010)
文摘Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented.As the adjacent reinforcement layers with wound angle have different radii,the single reinforcement layer shows the effect of tensile-shear coupling.Moreover,the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method.