The anisotropic properties of 1T- and 2H-TaS2 axe investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exh...The anisotropic properties of 1T- and 2H-TaS2 axe investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the ε^xx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1^xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.展开更多
We systematically measure the superconducting(SC)and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c-3.5 K.We find that the upper critical field H_(c2)(T)exhibits a large anisotropic ratio o...We systematically measure the superconducting(SC)and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c-3.5 K.We find that the upper critical field H_(c2)(T)exhibits a large anisotropic ratio of H_(c2)^(ab)/H_(c2)^c^9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)^(ab)/H_(c1)^c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T)and SC diamagnetic signal are found to change little initially below T_c-3.5 K and then to increase abruptly upon cooling to a characteristic temperature of-2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T-2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60°characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation.展开更多
Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the ...Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the resistivity anisotropy P⊥/P∥ lies in the range 486-615 for different compounds at 2K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near Tcow = 284(3)K, 316(3)K, 359(3)K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3)K, 161(3)K, 108(3)K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalenee in these compounds. Antiferromagnetie-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.展开更多
Structural, anisotropic, and thermodynamic properties of Imm2-BCN were studied based on density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation(GGA). T...Structural, anisotropic, and thermodynamic properties of Imm2-BCN were studied based on density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation(GGA). The elastic constants were confirmed that the predicted Imm2-BCN is mechanically stable. The anisotropy of elastic properties were also studied systematically. The anisotropy studies of Young's modulus, shear modulus, linear compressibility, and Poisson's ratio show that the Imm2-BCN exhibits a large anisotropy. Through the quasi-harmonic Debye model, the relations between the equilibrium volume V, thermal expansion α, the heat capacity C_V and CP, the Grüneisen parameter γ, and the Debye temperature Θ_D with pressure P and temperature T were also studied systematically.展开更多
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an...Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.展开更多
First principles calculations were used to explore the structural stability, mechanical properties, and thermodynamic properties of LaT2Al20(T = Ti, V, Cr, Nb, and Ta) intermetallics. The calculated formation enthalpy...First principles calculations were used to explore the structural stability, mechanical properties, and thermodynamic properties of LaT2Al20(T = Ti, V, Cr, Nb, and Ta) intermetallics. The calculated formation enthalpy and phonon frequencies indicate that LaT2Al20intermetallics exhibit the structural stability. The elastic moduli(B, G, E, and Hv) indicate that these intermetallics possess the better elastic properties than pure Al. The values of Poisson’s ratio v and B/G demonstrate that LaT2Al20intermetallics are all brittle materials. The anisotropy of elasticity and Young’s modulus(three-and two-dimensional figures) indicate that LaT2Al20compounds are anisotropic. Importantly, the calculated thermal quantities demonstrate that LaT2Al20intermetallics possess the better thermal physical properties than pure Al at high temperatures.展开更多
Two-dimensional(2D)materials,such as transition metal dichalcogenides(TMDs),black phosphorus(BP),MXene and borophene,have aroused extensive attention since the discovery of graphene in 2004.They have wide range of app...Two-dimensional(2D)materials,such as transition metal dichalcogenides(TMDs),black phosphorus(BP),MXene and borophene,have aroused extensive attention since the discovery of graphene in 2004.They have wide range of applications in many research fields,such as optoelectronic devices,energy storage,catalysis,owing to their striking physical and chemical properties.Among them,anisotropic 2D material is one kind of 2D materials that possess different properties along different directions caused by the intrinsic anisotropic atoms5 arrangement of the 2D materials,mainly including BP,borophene,low-symmetry TMDs(ReSe2 and ReSa)and group IV monochalcogenides(SnS,SnSe,GeS,and GeSe).Recently,a series of new devices has been fabricated based on these anisotropic 2D materials.In this review,we start from a brief introduction of the classifications,crystal structures,preparation techniques,stability,as well as the strategy to discriminate the anisotropic characteristics of 2D materials.Then,the recent advanced applications including electronic devices,optoelectronic devices,thermoelectric devices and nanomechanical devices based on the anisotropic 2D materials both in experiment and theory have been summarized.Finally,the current challenges and prospects in device designs,integration,mechanical analysis,and micro-/nano-fabrication techniques related to anisotropic 2D materials have been discussed.This review is aimed to give a generalized knowledge of anisotropic 2D materials and their current devices applications,and thus inspiring the exploration and development of other kinds of new anisotropic 2D materials and various novel device applications.展开更多
Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishme...Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to the remarkable optical properties of these materials and their prospects for new devices. Herein, we report the anisotropic and thickness- dependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS). Three Raman-scattering peaks corresponding to the B3g,, A1g, and A2g modes with a strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at -1.66 eV that originates from the direct optical transition in GeS at room temperature. The polarization-dependent characteristics of the PL, which are revealed for the first time, along with the demonstration of anisotropic absorption, indicate an obvious anisotropic optical transition near the band edge of GeS, which is supported by density functional theory calculations. The significantly thickness-dependent PL is observed and discussed. This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties, such as polarization-sensitive photodetectors.展开更多
This study proposes a feasible and scalable production strategy to naturally obtain aligned platinum diselenide(PtSe_(2))nanoribbon arrays with anisotropic conductivity.The anisotropic properties of two-dimensional(2D...This study proposes a feasible and scalable production strategy to naturally obtain aligned platinum diselenide(PtSe_(2))nanoribbon arrays with anisotropic conductivity.The anisotropic properties of two-dimensional(2D)materials,especially transition-metal dichalcogenides(TMDs),have attracted great interest in research.The dependence of physical properties on their lattice orientations is of particular interest because of its potential in diverse applications,such as nanoelectronics and optoelectronics.One-dimensional(1D)nanostructures facilitate many feasible production strategies for shaping 2D materials into unidirectional 1D nanostructures,providing methods to investigate the anisotropic properties of 2D materials based on their lattice orientations and dimensionality.The natural alignment of zigzag(ZZ)PtSe_(2) nanoribbons is experimentally demonstrated using angle-resolved polarized Raman spectroscopy(ARPRS),and the selective growth mechanism is further theoretically revealed by comparing edges and edge energies of different orientations using the density functional theory(DFT).Back-gate field-effect transistors(FETs)are also constructed of unidirectional PtSe_(2) nanoribbons to investigate their anisotropic electrical properties,which align with the results of the projected density of states(DOS)calculations.This work provides new insight into the anisotropic properties of 2D materials and a feasible investigation strategy from experimental and theoretical perspectives.展开更多
In this study,the thickness-dependent microstructural characteristics of duplex stainless steel 2205 multi-pass welded joints were first investigated by the combination of optical microscope and electron back-scattere...In this study,the thickness-dependent microstructural characteristics of duplex stainless steel 2205 multi-pass welded joints were first investigated by the combination of optical microscope and electron back-scattered diffraction observation.Subsequently,a series of tensile tests of miniature samples cut from different passes and directions were performed to analyze the thickness-dependent and anisotropic mechanical properties.The results demonstrate that the microstructure changed with the welded passes,i.e.,a large number of grain boundary austenite,Widmanstätten austenite and a small number of tiny intragranular austenite existed at the surface passes,while a mass of intragranular austenite were found at the middle passes.Meanwhile,the Kurdjumov–Sachs orientation relationship was widespread at the welded zone.In addition,the yield and tensile strengths of the middle passes were greater than that of the surface passes due to the grain-boundary strengthening by tiny intragranular austenite.Furthermore,due to the existence of Kurdjumov–Sachs orientation relationship,the longitudinal yield and tensile strength were greater than transverse values,particularly for the middle passes.展开更多
Both the intrinsic anisotropic optical materials and fullerene-assembled 2D materials have attracted much interest in fundamental science and potential applications.The synthesis of a monolayer(ML)fullerene makes the ...Both the intrinsic anisotropic optical materials and fullerene-assembled 2D materials have attracted much interest in fundamental science and potential applications.The synthesis of a monolayer(ML)fullerene makes the combination of these two features plausible.In this work,using first-principles calculations,we systematically study the electronic structure and optical properties of quasi-hexagonal phase(qHP)ML and quasi-tetragonal phase(qTP)ML fullerenes.The calculations of q HP ML show that it is a semiconductor with small anisotropic optical absorption,which agrees with the recent experimental measurements.However,the results for qTP ML reveal that it is a semimetal with highly in-plane anisotropic absorption.The dichroic ratio,namely the absorption ratio of x-and y-polarized lightα_(xx)/α_(yy),is around 12 at photon energy of 0.29 eV.This anisotropy is much more pronounced when the photon energy is between 0.7 and 1.4 eV,whereα_(xx)becomes nearly zero whileα_(yy)is more than two orders of magnitude larger.This indicates qTP ML as a candidate for long-pursuit lossless metal and a potential material for atomically thin polarizer.We hope this will stimulate further experimental eforts in the study of qTP ML and other fullerene-assembled 2D materials.展开更多
A 3D nonlinear anisotropic composite biomechanical modeling of human skin was developed according to existing biomechanical experimental results,which can provide insights into the important structure-function relatio...A 3D nonlinear anisotropic composite biomechanical modeling of human skin was developed according to existing biomechanical experimental results,which can provide insights into the important structure-function relationship and parameters in skin tissue.A structural approach determines the macroscopic mechanical response of the skin tissue from its underlying structural components.The collagen fibers were embedded into a block of elastic gel matrix.The constitutive matrix of skin tissue consisted of both of collagen fiber and elastic gel block according to the rule that the collagen fibers were undulated with the ability to resist load only when completely straightened.The nonlinear and anisotropic mechanical responses were largely due to varying degree of fiber undulation.Statistical distributions were used to determine the extent of fiber undulation.The comparison of stress-strain plots between the modeling and experimental results showed the good coordination of the both.Some model parameters were discussed to compute the macroscopic mechanical response when the tissue block was subject to a simple deformation mode.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have attracted growing interest regarding their potential applications in next-generation electronic and optoelectronic devices.Owing to their atomic thickness...Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have attracted growing interest regarding their potential applications in next-generation electronic and optoelectronic devices.Owing to their atomic thickness and tunable bandgap,they exhibit unique mechanical,electrical,and optical properties.As a specific member of the TMDC family,rhenium disulfide(ReS_(2))has stimulated intensive interest due to its anisotropic crystal structure,weak inter-layer coupling,and anisotropic electrical and optical properties.In this review,we summarize the distinct crystal structure and intrinsic anisotropic properties of ReS_(2),followed by an introduction to its synthesis methods.The current applications of ReS_(2)and its heterojunctions are presented based on its anisotropic properties.This review not only provides a timely summary of the current applications of ReS_(2)and its heterojunctions,but also inspires new approaches to develop other innovative devices based on 2D materials with a low lattice symmetry.展开更多
The rapid development of solar cells based on lead halide perovskites(LHPs)has prompted very active research activities in other closely-related fields.Colloidal nanostructures of such materials display superior optoe...The rapid development of solar cells based on lead halide perovskites(LHPs)has prompted very active research activities in other closely-related fields.Colloidal nanostructures of such materials display superior optoelectronic properties.Especially,onedimensional(1D)LHPs nanowires show anisotropic optical properties when they are highly oriented.However,the ionic nature makes them very sensitive to external environment,limiting their large scale practical applications.Here,we introduce an amphiphilic block copolymer,polystyrene-block-poly(4-vinylpyridine)(PS-P4VP),to chemically modify the surface of colloidal CsPbBr3 nanowires.The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water.Taking advantage of the stability enhancement,we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires,and studied their anisotropic optical properties.展开更多
Using the first principles calculations based on density functional theory, the crystal structure, elastic anisotropy, and electronic properties of carbon, silicon and their alloys (C12Si4, C8Si8, and C4Si12) in a m...Using the first principles calculations based on density functional theory, the crystal structure, elastic anisotropy, and electronic properties of carbon, silicon and their alloys (C12Si4, C8Si8, and C4Si12) in a monoclinic structure (C2/m) are investigated. The calculated results such as lattice parameters, elastic constants, bulk modulus, and shear modulus of C16 and Si16 in C2/m structure are in good accord with previous work. The elastic constants show that C16, Si16, and their alloys in C2/m structure are mechanically stable. The calculated results of universal anisotropy index, compression and shear anisotropy percent factors indicate that C-Si alloys present elastic anisotropy, and CsSis shows a greater anisotropy. The Poisson's ratio and the BIG value show that C8Si8 is ductile material and other four C-Si alloys are brittle materials. In addition, Debye temperature and average sound velocity are predicted utilizing elastic modulus and density of C-Si alloys. The band structure and the partial density of states imply that C16 and Si16 are indirect band gap semiconductors, while 612Si4, C8Si8, and C4Si12 are semi-metallic alloys.展开更多
Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology featu...Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90503005 and 50472097), the State Key Development Program for Basic Research of China (Grant No 2005CB623603), Knowledge Innovation Program of Chinese Academy of Sciences, and Director Grants of Hefei Institutes of Physical Sciences. Acknowledgment Part of the calculations were performed at the Centre for Computational Science, Hefei Institute of Physics China.
文摘The anisotropic properties of 1T- and 2H-TaS2 axe investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the ε^xx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1^xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11834016,11888101,12061131005,51771224 and61888102)the National Key Research and Development Projects of China (Grant Nos.2017YFA0303003 and 2018YFA0305800)the Key Research Program and Strategic Priority Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos.QYZDY-SSW-SLH001,XDB33010200 and XDB25000000)。
文摘We systematically measure the superconducting(SC)and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c-3.5 K.We find that the upper critical field H_(c2)(T)exhibits a large anisotropic ratio of H_(c2)^(ab)/H_(c2)^c^9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)^(ab)/H_(c1)^c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T)and SC diamagnetic signal are found to change little initially below T_c-3.5 K and then to increase abruptly upon cooling to a characteristic temperature of-2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T-2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60°characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921303the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant No XDB07020100
文摘Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the resistivity anisotropy P⊥/P∥ lies in the range 486-615 for different compounds at 2K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near Tcow = 284(3)K, 316(3)K, 359(3)K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3)K, 161(3)K, 108(3)K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalenee in these compounds. Antiferromagnetie-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.
基金Funded by the Fund for Talents of Yunnan Province,China(No.KKSY201403006)the National Natural Science Foundation of China(No.61564005)
文摘Structural, anisotropic, and thermodynamic properties of Imm2-BCN were studied based on density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation(GGA). The elastic constants were confirmed that the predicted Imm2-BCN is mechanically stable. The anisotropy of elastic properties were also studied systematically. The anisotropy studies of Young's modulus, shear modulus, linear compressibility, and Poisson's ratio show that the Imm2-BCN exhibits a large anisotropy. Through the quasi-harmonic Debye model, the relations between the equilibrium volume V, thermal expansion α, the heat capacity C_V and CP, the Grüneisen parameter γ, and the Debye temperature Θ_D with pressure P and temperature T were also studied systematically.
基金The financial support by the National Natural Science Foundation of China(No.52002020)is acknowledged.
文摘Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
基金Project supported by the Program for Ph.D Start-up Fund of Liaoning Province of China(Grant No.201601161)
文摘First principles calculations were used to explore the structural stability, mechanical properties, and thermodynamic properties of LaT2Al20(T = Ti, V, Cr, Nb, and Ta) intermetallics. The calculated formation enthalpy and phonon frequencies indicate that LaT2Al20intermetallics exhibit the structural stability. The elastic moduli(B, G, E, and Hv) indicate that these intermetallics possess the better elastic properties than pure Al. The values of Poisson’s ratio v and B/G demonstrate that LaT2Al20intermetallics are all brittle materials. The anisotropy of elasticity and Young’s modulus(three-and two-dimensional figures) indicate that LaT2Al20compounds are anisotropic. Importantly, the calculated thermal quantities demonstrate that LaT2Al20intermetallics possess the better thermal physical properties than pure Al at high temperatures.
基金the State Key Research Development Program of China(No.2019YFB2203503)the National Natural Science Foundation of China(Nos.61875138,61961136001,61435010,U1801254)+5 种基金the Guangdong Science Foundation for Distinguished Young Scholars(No.2018B030306038)the Science and Technology Innovation Com mission o f Shenzhen(Nos.JCYJ20180507182047316,KQJSCX20180328095501798,KQTD2015032416270385,GIHZ20180928160209731)the Natural Science Foundation of SZU(No.860-000002110429)the Educational Com mission of Guangdong Province(Nos.2016KCXTD006,2018KCXTD026)the Science and Technology Development Fund(Nos.007/2017/A1,132/2017/A3)Macao SAR,China.
文摘Two-dimensional(2D)materials,such as transition metal dichalcogenides(TMDs),black phosphorus(BP),MXene and borophene,have aroused extensive attention since the discovery of graphene in 2004.They have wide range of applications in many research fields,such as optoelectronic devices,energy storage,catalysis,owing to their striking physical and chemical properties.Among them,anisotropic 2D material is one kind of 2D materials that possess different properties along different directions caused by the intrinsic anisotropic atoms5 arrangement of the 2D materials,mainly including BP,borophene,low-symmetry TMDs(ReSe2 and ReSa)and group IV monochalcogenides(SnS,SnSe,GeS,and GeSe).Recently,a series of new devices has been fabricated based on these anisotropic 2D materials.In this review,we start from a brief introduction of the classifications,crystal structures,preparation techniques,stability,as well as the strategy to discriminate the anisotropic characteristics of 2D materials.Then,the recent advanced applications including electronic devices,optoelectronic devices,thermoelectric devices and nanomechanical devices based on the anisotropic 2D materials both in experiment and theory have been summarized.Finally,the current challenges and prospects in device designs,integration,mechanical analysis,and micro-/nano-fabrication techniques related to anisotropic 2D materials have been discussed.This review is aimed to give a generalized knowledge of anisotropic 2D materials and their current devices applications,and thus inspiring the exploration and development of other kinds of new anisotropic 2D materials and various novel device applications.
文摘Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to the remarkable optical properties of these materials and their prospects for new devices. Herein, we report the anisotropic and thickness- dependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS). Three Raman-scattering peaks corresponding to the B3g,, A1g, and A2g modes with a strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at -1.66 eV that originates from the direct optical transition in GeS at room temperature. The polarization-dependent characteristics of the PL, which are revealed for the first time, along with the demonstration of anisotropic absorption, indicate an obvious anisotropic optical transition near the band edge of GeS, which is supported by density functional theory calculations. The significantly thickness-dependent PL is observed and discussed. This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties, such as polarization-sensitive photodetectors.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Nos.52072204 and 62104017)the National Postdoctoral Program for Innovative Talents of China(No.BX20200049)China Postdoctoral Science Foundation(No.2021M690013).
文摘This study proposes a feasible and scalable production strategy to naturally obtain aligned platinum diselenide(PtSe_(2))nanoribbon arrays with anisotropic conductivity.The anisotropic properties of two-dimensional(2D)materials,especially transition-metal dichalcogenides(TMDs),have attracted great interest in research.The dependence of physical properties on their lattice orientations is of particular interest because of its potential in diverse applications,such as nanoelectronics and optoelectronics.One-dimensional(1D)nanostructures facilitate many feasible production strategies for shaping 2D materials into unidirectional 1D nanostructures,providing methods to investigate the anisotropic properties of 2D materials based on their lattice orientations and dimensionality.The natural alignment of zigzag(ZZ)PtSe_(2) nanoribbons is experimentally demonstrated using angle-resolved polarized Raman spectroscopy(ARPRS),and the selective growth mechanism is further theoretically revealed by comparing edges and edge energies of different orientations using the density functional theory(DFT).Back-gate field-effect transistors(FETs)are also constructed of unidirectional PtSe_(2) nanoribbons to investigate their anisotropic electrical properties,which align with the results of the projected density of states(DOS)calculations.This work provides new insight into the anisotropic properties of 2D materials and a feasible investigation strategy from experimental and theoretical perspectives.
基金the National Natural Science Foundation of China(No.52105166)the Qingdao Postdoctoral Applied Research Project(ZX20220199).
文摘In this study,the thickness-dependent microstructural characteristics of duplex stainless steel 2205 multi-pass welded joints were first investigated by the combination of optical microscope and electron back-scattered diffraction observation.Subsequently,a series of tensile tests of miniature samples cut from different passes and directions were performed to analyze the thickness-dependent and anisotropic mechanical properties.The results demonstrate that the microstructure changed with the welded passes,i.e.,a large number of grain boundary austenite,Widmanstätten austenite and a small number of tiny intragranular austenite existed at the surface passes,while a mass of intragranular austenite were found at the middle passes.Meanwhile,the Kurdjumov–Sachs orientation relationship was widespread at the welded zone.In addition,the yield and tensile strengths of the middle passes were greater than that of the surface passes due to the grain-boundary strengthening by tiny intragranular austenite.Furthermore,due to the existence of Kurdjumov–Sachs orientation relationship,the longitudinal yield and tensile strength were greater than transverse values,particularly for the middle passes.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974076,11925408,11921004,12188101,and11874335)Key Project of Natural Science Foundation of Fujian Province(Grant No.2021J02012)+2 种基金Ministry of Science and Technology of China(Grant Nos.2018YFA0305700,and 2022YFA1403800)Chinese Academy of Sciences(Grant No.XDB33000000)Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0102)。
文摘Both the intrinsic anisotropic optical materials and fullerene-assembled 2D materials have attracted much interest in fundamental science and potential applications.The synthesis of a monolayer(ML)fullerene makes the combination of these two features plausible.In this work,using first-principles calculations,we systematically study the electronic structure and optical properties of quasi-hexagonal phase(qHP)ML and quasi-tetragonal phase(qTP)ML fullerenes.The calculations of q HP ML show that it is a semiconductor with small anisotropic optical absorption,which agrees with the recent experimental measurements.However,the results for qTP ML reveal that it is a semimetal with highly in-plane anisotropic absorption.The dichroic ratio,namely the absorption ratio of x-and y-polarized lightα_(xx)/α_(yy),is around 12 at photon energy of 0.29 eV.This anisotropy is much more pronounced when the photon energy is between 0.7 and 1.4 eV,whereα_(xx)becomes nearly zero whileα_(yy)is more than two orders of magnitude larger.This indicates qTP ML as a candidate for long-pursuit lossless metal and a potential material for atomically thin polarizer.We hope this will stimulate further experimental eforts in the study of qTP ML and other fullerene-assembled 2D materials.
基金the Innovation Foundation of Shanghai Jiaotong University
文摘A 3D nonlinear anisotropic composite biomechanical modeling of human skin was developed according to existing biomechanical experimental results,which can provide insights into the important structure-function relationship and parameters in skin tissue.A structural approach determines the macroscopic mechanical response of the skin tissue from its underlying structural components.The collagen fibers were embedded into a block of elastic gel matrix.The constitutive matrix of skin tissue consisted of both of collagen fiber and elastic gel block according to the rule that the collagen fibers were undulated with the ability to resist load only when completely straightened.The nonlinear and anisotropic mechanical responses were largely due to varying degree of fiber undulation.Statistical distributions were used to determine the extent of fiber undulation.The comparison of stress-strain plots between the modeling and experimental results showed the good coordination of the both.Some model parameters were discussed to compute the macroscopic mechanical response when the tissue block was subject to a simple deformation mode.
基金financially supported by the National Natural Science Foundation of China(Nos.11974041 and12034002)the Fundamental Research Funds for the Central Universities(No.FRF-IDRY-19-007)。
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have attracted growing interest regarding their potential applications in next-generation electronic and optoelectronic devices.Owing to their atomic thickness and tunable bandgap,they exhibit unique mechanical,electrical,and optical properties.As a specific member of the TMDC family,rhenium disulfide(ReS_(2))has stimulated intensive interest due to its anisotropic crystal structure,weak inter-layer coupling,and anisotropic electrical and optical properties.In this review,we summarize the distinct crystal structure and intrinsic anisotropic properties of ReS_(2),followed by an introduction to its synthesis methods.The current applications of ReS_(2)and its heterojunctions are presented based on its anisotropic properties.This review not only provides a timely summary of the current applications of ReS_(2)and its heterojunctions,but also inspires new approaches to develop other innovative devices based on 2D materials with a low lattice symmetry.
基金This work was supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division,under Contract No.DE-AC02-05-CH11231 within the Physical Chemistry of Inorganic Nanostructures Program(KC3103).M.S.acknowledges his support from the National Science Foundation Graduate Research Fellowship under Grant No.DGE 1752814.
文摘The rapid development of solar cells based on lead halide perovskites(LHPs)has prompted very active research activities in other closely-related fields.Colloidal nanostructures of such materials display superior optoelectronic properties.Especially,onedimensional(1D)LHPs nanowires show anisotropic optical properties when they are highly oriented.However,the ionic nature makes them very sensitive to external environment,limiting their large scale practical applications.Here,we introduce an amphiphilic block copolymer,polystyrene-block-poly(4-vinylpyridine)(PS-P4VP),to chemically modify the surface of colloidal CsPbBr3 nanowires.The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water.Taking advantage of the stability enhancement,we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires,and studied their anisotropic optical properties.
基金Supported by the Natural Science Foundation of China under Grant No.61474089Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics under Grant No.2015-0214.YY.K
文摘Using the first principles calculations based on density functional theory, the crystal structure, elastic anisotropy, and electronic properties of carbon, silicon and their alloys (C12Si4, C8Si8, and C4Si12) in a monoclinic structure (C2/m) are investigated. The calculated results such as lattice parameters, elastic constants, bulk modulus, and shear modulus of C16 and Si16 in C2/m structure are in good accord with previous work. The elastic constants show that C16, Si16, and their alloys in C2/m structure are mechanically stable. The calculated results of universal anisotropy index, compression and shear anisotropy percent factors indicate that C-Si alloys present elastic anisotropy, and CsSis shows a greater anisotropy. The Poisson's ratio and the BIG value show that C8Si8 is ductile material and other four C-Si alloys are brittle materials. In addition, Debye temperature and average sound velocity are predicted utilizing elastic modulus and density of C-Si alloys. The band structure and the partial density of states imply that C16 and Si16 are indirect band gap semiconductors, while 612Si4, C8Si8, and C4Si12 are semi-metallic alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975112 and 51575289)。
文摘Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains.