期刊文献+
共找到770篇文章
< 1 2 39 >
每页显示 20 50 100
Anisotropism of the Non-Smooth Surface of Butterfly Wing 被引量:10
1
作者 Gang Sun~(1,2), Yan Fang~(1,2), Qian Cong~1, Lu-quan Ren~11. Key Laboratory of Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University,Changchun 130022, P. R. China2. School of Life Science, Changchun Normal University, Changchun 130032, P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期71-76,共6页
Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,subm... Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.The scales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontal links,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system. Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wing surface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining the self-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaning substrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface. 展开更多
关键词 micro-/nano-structure anisotropism SELF-CLEANING SUPER-HYDROPHOBICITY sliding angle
下载PDF
A bounding surface visco-plasticity model considering generalized spacing ratio of soils
2
作者 Xiaosen Kang Hongjian Liao +1 位作者 Qiangbing Huang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1832-1846,共15页
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un... The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate. 展开更多
关键词 Soil Constitutive model Visco-plastic behavior Strain rate CREEP ANISOTROPIC
下载PDF
3D robust anisotropic diffusion filtering algorithm for sparse view neutron computed tomography 3D image reconstruction
3
作者 Yang Liu Teng-Fei Zhu +1 位作者 Zhi Luo Xiao-Ping Ouyang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期13-29,共17页
The most critical part of a neutron computed tomography(NCT) system is the image processing algorithm,which directly affects the quality and speed of the reconstructed images.Various types of noise in the system can d... The most critical part of a neutron computed tomography(NCT) system is the image processing algorithm,which directly affects the quality and speed of the reconstructed images.Various types of noise in the system can degrade the quality of the reconstructed images.Therefore,to improve the quality of the reconstructed images of NCT systems,efficient image processing algorithms must be used.The anisotropic diffusion filtering(ADF) algorithm can not only effectively suppress the noise in the projection data,but also preserve the image edge structure information by reducing the diffusion at the image edges.Therefore,we propose the application of the ADF algorithm for NCT image reconstruction.To compare the performance of different algorithms in NCT systems,we reconstructed images using the ordered subset simultaneous algebraic reconstruction technique(OS-SART) algorithm with different regular terms as image processing algorithms.In the iterative reconstruction,we selected two image processing algorithms,the Total Variation and split Bregman solved total variation algorithms,for comparison with the performance of the ADF algorithm.Additionally,the filtered back-projection algorithm was used for comparison with an iterative algorithm.By reconstructing the projection data of the numerical and clock models,we compared and analyzed the effects of each algorithm applied in the NCT system.Based on the reconstruction results,OS-SART-ADF outperformed the other algorithms in terms of denoising,preserving the edge structure,and suppressing artifacts.For example,when the 3D Shepp–Logan was reconstructed at 25 views,the root mean square error of OS-SART-ADF was the smallest among the four iterative algorithms,at only 0.0292.The universal quality index,mean structural similarity,and correlation coefficient of the reconstructed image were the largest among all algorithms,with values of 0.9877,0.9878,and 0.9887,respectively. 展开更多
关键词 NCT OS-SART Sparse-view Anisotropic diffusion filtering
下载PDF
MULTIPLE INTERSECTIONS OF SPACE-TIME ANISOTROPIC GAUSSIAN FIELDS
4
作者 陈振龙 苑伟杰 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期275-294,共20页
Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X... Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields. 展开更多
关键词 anisotropic Gaussian field multiple intersections Hausdorff measure capacity
下载PDF
Properties of focused Laguerre–Gaussian beam propagating in anisotropic ocean turbulence
5
作者 王新光 马洋斌 +3 位作者 袁邱杰 陈伟 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期386-393,共8页
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ... We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams. 展开更多
关键词 vortex beam orbital angular momentum focusing mirror anisotropic turbulence
下载PDF
Multiscale modeling of gas-induced fracturing in anisotropic clayey rocks
6
作者 Jianxiong Yang Jianfeng Liu +2 位作者 Zhengyuan Qin Xuhai Tang Houquan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2091-2110,共20页
In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The prim... In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The primary mechanism for gas breakthrough is the opening of micro-fractures due to high gas pressure.This occurs at gas pressures lower than the combined strength of the rock and its minimum principal stress under external loading conditions.To investigate the mechanism of microscale mode-I ruptures,it is essential to incorporate a multiscale approach that includes subcritical microcracks in the modeling framework.In this contribution,we derive the model from microstructures that contain periodically distributed microcracks within a porous material.The damage evolution law is coupled with the macroscopic poroelastic system by employing the asymptotic homogenization method and considering the inherent hydro-mechanical(HM)anisotropy at the microscale.The resulting permeability change induced by fracture opening is implicitly integrated into the gas flow equation.Verification examples are presented to validate the developed model step by step.An analysis of local macroscopic response is undertaken to underscore the influence of factors such as strain rate,initial damage,and applied stress,on the gas migration process.Numerical examples of direct tension tests are used to demonstrate the model’s efficacy in describing localized failure characteristics.Finally,the simulation results for preferential gas flow reveal the robustness of the two-scale model in explicitly depicting gas-induced fracturing in anisotropic clayey rocks.The model successfully captures the common behaviors observed in laboratory experiments,such as a sudden drop in gas injection pressure,rapid build-up of downstream gas pressure,and steady-state gas flow following gas breakthrough. 展开更多
关键词 Deep geological repositories Mode-I microcracks Time-dependent damage Fracturing process Anisotropic rock
下载PDF
Highly Aligned Graphene Aerogels for Multifunctional Composites
7
作者 Ying Wu Chao An +4 位作者 Yaru Guo Yangyang Zong Naisheng Jiang Qingbin Zheng Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期276-342,共67页
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an... Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material. 展开更多
关键词 Highly aligned graphene aerogels Quantitative characterization of alignment Multifunctional composites Anisotropic properties Multifunctional applications
下载PDF
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
8
作者 毋克凡 张虎 唐桂华 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期48-60,共13页
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly ... Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness. 展开更多
关键词 COMPOSITES C/Si ANISOTROPIC
下载PDF
THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM FOR AN ANISOTROPIC MEDIUM BY A PARTIALLY COATED BOUNDARY
9
作者 向建立 严国政 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期339-354,共16页
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and... We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method. 展开更多
关键词 interior transmission eigenvalue anisotropic medium partially coated boundary the analytic Fredholm theory T-coercive method
下载PDF
Alleviating the anisotropic microstructural change and boosting the lithium ions diffusion by grain orientation regulation for Ni-rich cathode materials
10
作者 Xinyou He Shilin Su +3 位作者 Bao Zhang Zhiming Xiao Zibo Zhang Xing Ou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期213-222,I0005,共11页
Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in t... Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes. 展开更多
关键词 Ni-rich cathode Grain orientation regulation Anisotropic microstructural change Precursor engineering Li~+-ions diffusion
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir
11
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity Convolutional neural network(CNN) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity
12
作者 Allah Ditta 夏铁成 +1 位作者 Irfan Mahmood Asif Mahmood 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期179-189,共11页
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g... This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings. 展开更多
关键词 anisotropic spheres quintessence field modified Rastall teleparallel gravity equation of state(EoS) f(T)gravity
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
13
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
14
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
15
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
下载PDF
Anisotropic optical and electric properties of β-gallium oxide 被引量:1
16
作者 Yonghui Zhang Fei Xing 《Journal of Semiconductors》 EI CAS CSCD 2023年第7期8-22,共15页
The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flo... The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flow of how to exfoliate nanoflakes from bulk material is introduced.Anisotropic optical properties,including optical bandgap,Raman and photolumines-cence characters are comprehensively reviewed.Three measurement configurations of angle-resolved polarized Raman spec-tra(ARPRS)are reviewed,with Raman intensity formulas calculated with Raman tensor elements.The method to obtain the Raman tensor elements of phonon modes through experimental fitting is also introduced.In addition,the anisotropy in elec-tron mobility and affinity are discussed.The applications,especially polarization photodetectors,based onβ-Ga_(2)O_(3)were summa-rized comprehensively.Three kinds of polarization detection mechanisms based on material dichroism,1D morphology and metal-grids are discussed in-depth.This review paper provides a framework for anisotropic optical and electric properties ofβ-Ga_(2)O_(3),as well as the applications based on these characters,and is expected to lead to a wider discussion on this topic. 展开更多
关键词 gallium oxide ANISOTROPIC DICHROISM POLARIZATION MONOCLINIC
下载PDF
Medical Image Fusion Based on Anisotropic Diffusion and Non-Subsampled Contourlet Transform 被引量:1
17
作者 Bhawna Goyal Ayush Dogra +3 位作者 Rahul Khoond Dawa Chyophel Lepcha Vishal Goyal Steven LFernandes 《Computers, Materials & Continua》 SCIE EI 2023年第7期311-327,共17页
The synthesis of visual information from multiple medical imaging inputs to a single fused image without any loss of detail and distortion is known as multimodal medical image fusion.It improves the quality of biomedi... The synthesis of visual information from multiple medical imaging inputs to a single fused image without any loss of detail and distortion is known as multimodal medical image fusion.It improves the quality of biomedical images by preserving detailed features to advance the clinical utility of medical imaging meant for the analysis and treatment of medical disor-ders.This study develops a novel approach to fuse multimodal medical images utilizing anisotropic diffusion(AD)and non-subsampled contourlet transform(NSCT).First,the method employs anisotropic diffusion for decomposing input images to their base and detail layers to coarsely split two features of input images such as structural and textural information.The detail and base layers are further combined utilizing a sum-based fusion rule which maximizes noise filtering contrast level by effectively preserving most of the structural and textural details.NSCT is utilized to further decompose these images into their low and high-frequency coefficients.These coefficients are then combined utilizing the principal component analysis/Karhunen-Loeve(PCA/KL)based fusion rule independently by substantiating eigenfeature reinforcement in the fusion results.An NSCT-based multiresolution analysis is performed on the combined salient feature information and the contrast-enhanced fusion coefficients.Finally,an inverse NSCT is applied to each coef-ficient to produce the final fusion result.Experimental results demonstrate an advantage of the proposed technique using a publicly accessible dataset and conducted comparative studies on three pairs of medical images from different modalities and health.Our approach offers better visual and robust performance with better objective measurements for research development since it excellently preserves significant salient features and precision without producing abnormal information in the case of qualitative and quantitative analysis. 展开更多
关键词 Anisotropic diffusion BIOMEDICAL medical HEALTH DISEASES adversarial attacks image fusion research and development PRECISION
下载PDF
Tracking the phase transformation and microstructural evolution of Sn anode using operando synchrotron X-ray energy-dispersive diffraction and X-ray tomography 被引量:1
18
作者 Kang Dong Fu Sun +4 位作者 Andre Hilger Paul H.Kamm Markus Osenberg Francisco Garcia-Moreno Ingo Manke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期429-437,I0011,共10页
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol... Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries. 展开更多
关键词 Sn anode Li-Sn phase transformation X-ray tomography Operando X-ray diffraction Anisotropic displacement Digital volume correlation(DVC)
下载PDF
Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing 被引量:2
19
作者 Qilin Jiang Long Chen +8 位作者 Jukun Liu Yuchan Zhang Shian Zhang Donghai Feng Tianqing Jia Peng Zhou Qian Wang Zhenrong Sun Hongxing Xu 《Opto-Electronic Science》 2023年第1期11-22,共12页
This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LI... This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band. 展开更多
关键词 transparent nanowires periodic surface nanostructures femtosecond laser direct writing ITO film anisotropic electrical conductivity
下载PDF
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer 被引量:1
20
作者 Jiangbo Lyu Tao Zhu +9 位作者 Yan Zhou Zhenmin Chen Yazhi Pi Zhengtong Liu Xiaochuan Xu Ke Xu Xu Ma Lei Wang Zizheng Cao Shaohua Yu 《Opto-Electronic Science》 2023年第11期14-24,共11页
Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices.Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic ... Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices.Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate(LN).To the best of our knowledge,this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices.Specifically,the orientation dependent properties of anisotropic materials are included in the adjoint method,which provides a more precise prediction of light propagation within such materials.The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate(TFLN)platform.By benchmarking the device performances of our method with those of classical scalar-based inverse design,we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform.This proposed method fills the gap of inverse design of anisotropic materials based photonic devices,which finds prominent applications in TFLN platforms and other anisotropicmaterial based photonic integration platforms. 展开更多
关键词 integrated photonics inverse design for anisotropic materials adjoint method lithium niobate
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部