Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of eff...Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of effective anisotropy constant K_(eff) on grain size was investigated. Calculation results reveal that the exchange-coupling interaction enhances and the effective anisotropy of material K_(eff) decreases with the reduction of grain size. The variation of K_(eff) is basically the same as that of coercivity. The decrease of effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline Nd_2Fe_(14)B permanent magnetic material.展开更多
Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard g...Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.展开更多
The quantum fluctuations of a three-layer Heisenberg model with six sublattices are studied by the retarded Green's function method and the spin-wave theory. The effects of anisotropy on the quantum fluctuations at z...The quantum fluctuations of a three-layer Heisenberg model with six sublattices are studied by the retarded Green's function method and the spin-wave theory. The effects of anisotropy on the quantum fluctuations at zero temperature are discussed. The results show that the interlayer anisotropy plays an important role in balancing the quantum competitions.展开更多
Fe 100- x Ni x alloys of ultrafine particle with the average grain size of about 10 nm were synthesized by mechanically alloying process. The samples were investigated by X ray diffraction and measure...Fe 100- x Ni x alloys of ultrafine particle with the average grain size of about 10 nm were synthesized by mechanically alloying process. The samples were investigated by X ray diffraction and measurements of the saturation magnetization and coercivity force. Both b.c.c and f.c.c phase exist within a wide range for Fe 100- x Ni x , while x ≤45. The effective magnetic anisotropy K e was measured by applying the law of approach to saturation. The value of K e decreases with an increase of Ni content. It is noticed that the strain anisotropy makes a large contribution to the magnetic anisotropy. The estimation of grain size leads to the determination of the single domain critical size and domain wall energy. The exchange stiffness and exchange integral deduced from the relationship between the effective magnetic anisotropy and domain wall energy are in agreement with that calculated by other methods.展开更多
Controlling the magnetic anisotropy ofmagnetic material is extremely important forany technological applications.FeSiBamorphous alloy has been chosen for investi-gation.Although the alloy might be a goodsoft magnetic ...Controlling the magnetic anisotropy ofmagnetic material is extremely important forany technological applications.FeSiBamorphous alloy has been chosen for investi-gation.Although the alloy might be a goodsoft magnetic material,it might not be ideal ifthe quenching processing is carried out directly展开更多
The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 ...The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.展开更多
The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found...The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found that the array's best annealing temperature and crys- talline structure did not show any apparent dependence on the treatment of applying a 3 kOe magnetic field along the wire during the annealing process. For arrays with small Dw or with large Di, the treatment of magnetic field annealing also had no obvious influence on their magnetic performances. However, such a magnetic field annealing constrained the shift of the easy magnetization direction and improved the coercivity and the squareness obviously for arrays with large Dw or with small Di. The difference in the intensity of the effective anisotropic field within the arrays was believed to be responsible for this different variation of the array's magnetic properties after magnetic field annealing.展开更多
Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These ...Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These materials have been appreciated for a long time due to their high acoustic velocities,which are important parameters for active microelectromechanical systems(MEMS) devices.For this object,first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical,piezoelectric and some thermal properties of the(B3) boron phosphide are presented,using the density functional perturbation theory(DFPT).The independent elastic and compliance constants,the Reuss modulus,Voigt modulus,and the shear modulus,the Kleinman parameter,the Cauchy and Born coefficients,the elastic modulus,and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained.The direct and converse piezoelectric coefficients,the longitudinal,transverse,and average sound velocity,the Debye temperature,and the Debye frequency of(B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.展开更多
We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities hav...We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.展开更多
In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties....In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties. With the increase of the E-field from 0 to 8 kV/cm, the magnetic anisotropy field Heffis dramatically enhanced from 169 to 600 Oe, which further leads to a significant enhancement of ferromagnetic resonance frequency from 4.57 to 8.73 GHz under zero bias magnetic field, and a simultaneous decrease of the damping constant α from 0.021 to 0.0186. These features demonstrate that this multiferroic composite is a promising candidate for fabricating E-field tunable microwave components.展开更多
基金Project supported by National‘863’Project (2002AA324050 2002AA302602) and Natural Science Foundation of China(50371046) and Doctoral Foundation of China (20040422014)
文摘Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of effective anisotropy constant K_(eff) on grain size was investigated. Calculation results reveal that the exchange-coupling interaction enhances and the effective anisotropy of material K_(eff) decreases with the reduction of grain size. The variation of K_(eff) is basically the same as that of coercivity. The decrease of effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline Nd_2Fe_(14)B permanent magnetic material.
文摘Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.
基金Project supported by the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University,China(Grant No.LZUMMM2010010)the Scientific Foundation of the Educational Department of Liaoning Province,China(Grant No.L2010390)+2 种基金the Natural Science Foundation of Liaoning Province of China(Grant No.20102171)the Scientific Technology Plan of Shenyang,China(Grant No.F10-205-1-33)the Excellent Talents Program of the University of Liaoning Province,China(Grant No.LR201031)
文摘The quantum fluctuations of a three-layer Heisenberg model with six sublattices are studied by the retarded Green's function method and the spin-wave theory. The effects of anisotropy on the quantum fluctuations at zero temperature are discussed. The results show that the interlayer anisotropy plays an important role in balancing the quantum competitions.
文摘Fe 100- x Ni x alloys of ultrafine particle with the average grain size of about 10 nm were synthesized by mechanically alloying process. The samples were investigated by X ray diffraction and measurements of the saturation magnetization and coercivity force. Both b.c.c and f.c.c phase exist within a wide range for Fe 100- x Ni x , while x ≤45. The effective magnetic anisotropy K e was measured by applying the law of approach to saturation. The value of K e decreases with an increase of Ni content. It is noticed that the strain anisotropy makes a large contribution to the magnetic anisotropy. The estimation of grain size leads to the determination of the single domain critical size and domain wall energy. The exchange stiffness and exchange integral deduced from the relationship between the effective magnetic anisotropy and domain wall energy are in agreement with that calculated by other methods.
文摘Controlling the magnetic anisotropy ofmagnetic material is extremely important forany technological applications.FeSiBamorphous alloy has been chosen for investi-gation.Although the alloy might be a goodsoft magnetic material,it might not be ideal ifthe quenching processing is carried out directly
基金Supported by the National Basic Research Program of China under Grant No 2011CB921804the Beijing Key Subject Foundation of Condensed Matter Physics under Grant No 0114023
文摘The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.
基金ACKNOWLEDGMENTS This work was supported by the National Nature Science Foundation of China (No.50171033), the National Key Project of Fundamental Research of China (No.2005CB623605), and the Scientific Research Foundation for the Doctor of Hefei University of Technology (No.035032).
文摘The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found that the array's best annealing temperature and crys- talline structure did not show any apparent dependence on the treatment of applying a 3 kOe magnetic field along the wire during the annealing process. For arrays with small Dw or with large Di, the treatment of magnetic field annealing also had no obvious influence on their magnetic performances. However, such a magnetic field annealing constrained the shift of the easy magnetization direction and improved the coercivity and the squareness obviously for arrays with large Dw or with small Di. The difference in the intensity of the effective anisotropic field within the arrays was believed to be responsible for this different variation of the array's magnetic properties after magnetic field annealing.
文摘Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These materials have been appreciated for a long time due to their high acoustic velocities,which are important parameters for active microelectromechanical systems(MEMS) devices.For this object,first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical,piezoelectric and some thermal properties of the(B3) boron phosphide are presented,using the density functional perturbation theory(DFPT).The independent elastic and compliance constants,the Reuss modulus,Voigt modulus,and the shear modulus,the Kleinman parameter,the Cauchy and Born coefficients,the elastic modulus,and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained.The direct and converse piezoelectric coefficients,the longitudinal,transverse,and average sound velocity,the Debye temperature,and the Debye frequency of(B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.
基金supported by the National Natural Science Foundation of China(Grant No.51172067)the Hunan Provincial Natural Science Fund for Distinguished Young Scholars,China(Grant No.13JJ1013)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130161110036)the New Century Excellent Talents in University,China(Grant No.NCET-12-0171.D)
文摘We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674187)
文摘In this study, we observe a strong inverse magnetoelectric coupling in Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties. With the increase of the E-field from 0 to 8 kV/cm, the magnetic anisotropy field Heffis dramatically enhanced from 169 to 600 Oe, which further leads to a significant enhancement of ferromagnetic resonance frequency from 4.57 to 8.73 GHz under zero bias magnetic field, and a simultaneous decrease of the damping constant α from 0.021 to 0.0186. These features demonstrate that this multiferroic composite is a promising candidate for fabricating E-field tunable microwave components.