In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
Anisotropy of mechanical property is an important feature influencing the service performance of titanium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield s...Anisotropy of mechanical property is an important feature influencing the service performance of titanium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield strength along circumferential direction(CD),and larger elongation along rolling direction(RD),presenting significant anisotropy.Subsequently,the quantitative characteristics and underlying mechanism of the property anisotropy were revealed by analyzing the slip,damage and fracture behavior under the combined effects of the spun{0002}basal texture and fibrous microstructure for different loading directions.The results showed that the prismatic slip in primaryαgrain is the dominant deformation mechanism for both loading directions at the yielding stage.The prismatic slip is harder under CD loading,which makes CD loading present higher yield strength than RD loading.Additionally,the yield anisotropy can be quantified through the inverse ratio of the averaged Schmid Factor of the activated prismatic slip under different loading directions.As for the plasticity anisotropy,the harder and slower slip development under CD loading causes that the CD loading presents larger external force and normal stress on slip plane,thus leading to more significant cleavage fracture than RD loading.Moreover,the micro-crack path under RD loading is more tortuous than CD loading because the fibrous microstructure is elongated along RD,which may suppress the macro fracture under RD loading.These results suggest that weakening the texture and fibrous morphology of microstructure is critical to reduce the differences in slip,damage and fracture behavior along different directions,alleviate the property anisotropy and optimize the service performance of Ti alloy tube formed by hot flow forming.展开更多
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i...The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.展开更多
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv...Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas.展开更多
In this paper, the relationship between anisotropic mechanical properties and the corresponding microstructure evolution of wrought magnesium alloys is critically reviewed. Experimental observations of the strong anis...In this paper, the relationship between anisotropic mechanical properties and the corresponding microstructure evolution of wrought magnesium alloys is critically reviewed. Experimental observations of the strong anisotropy(including the strength differential effect) induced by texture and twinning are discussed under different loading conditions(i.e., monotonic, cyclic and multiaxial loading). An accurate constitutive model is essential to describe the mechanical responses and to predict the forming performance considering engineering applications. Therefore, macroscale constitutive modeling of the anisotropy of magnesium alloys with directional distortional hardening are comprehensively reviewed with different approaches. To clarify the origin of the anisotropic behavior, physics-based mesoscale modeling of the anisotropy is also compared in detail.展开更多
Many rock types have naturally occurring inherent anisotropic planes, such as bedding planes, foliation,or flow structures. Such characteristic induces directional features and anisotropy in rocks' strength anddeform...Many rock types have naturally occurring inherent anisotropic planes, such as bedding planes, foliation,or flow structures. Such characteristic induces directional features and anisotropy in rocks' strength anddeformational properties. The HoekeBrown (HeB) failure criterion is an empirical strength criterionwidely applied to rock mechanics and engineering. A direct modification to HeB failure criterion toaccount for rock anisotropy is considered as the base of the research. Such modification introduced a newdefinition of the anisotropy as direct parameter named the anisotropic parameter (Kb). However, thecomputation of this parameter takes much experimental work and cannot be calculated in a simple way.The aim of this paper is to study the trend of the relation between the degree of anisotropy (Rc) and theminimum value of anisotropic parameter (Kmin), and to predict the Kmin directly from the uniaxialcompression tests instead of triaxial tests, and also to decrease the amount of experimental work. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
We comparatively studied the mechanical properties anisotropy, microstructure and texture of the commercial and the new developed AA6111 alloys through tensile test, optical microscopy, and XRD analysis. The results s...We comparatively studied the mechanical properties anisotropy, microstructure and texture of the commercial and the new developed AA6111 alloys through tensile test, optical microscopy, and XRD analysis. The results show that the anisotropy of mechanical properties for the developed AA6111 alloy is lower than that of the commercial alloy. The developed alloy possesses higher r value, lower Ar value and more uniform microstructure, compared with the commercial AA6111 alloy, indicating that the deep drawability of the developed alloy has been improved significantly. The recrystallization textures of the two alloy sheets are also different. The recrystallization texture of the commercial alloy sheet mainly includes Cube and { 114}〈311〉 orientations, while the recrystallization texture of developed alloy sheet consists of Cube, Goss and R orientations. The relationships among the deep drawabilities, microstructure and texture were discussed thereafter.展开更多
Magnesium alloys are ideal lightweight materials;however,their applications are extremely limited due to their low strength,poor ductility,and weak corrosion resistance.In the present study,a friction stir processing(...Magnesium alloys are ideal lightweight materials;however,their applications are extremely limited due to their low strength,poor ductility,and weak corrosion resistance.In the present study,a friction stir processing(FSP)treatment was employed to optimize the mechanical properties and corrosion resistance of an as-cast Mg-5Zn alloy.The average grain size of the Mg-5Zn alloy was refined from 133.8μm to1.3μm as a result of FSP.Along different directions,FSP exhibited the enhancement effects on different mechanical properties.Furthermore,according to the potentiodynamic polarization results,the corrosion current density at the free-corrosion potential of the FSPed sample,was 4.1×10^(-6)A/cm^(2)in 3.5 wt.%Na Cl aqueous solution,which was significantly lower than that of the as-cast sample.Electrochemical impedance spectroscopy revealed that the polarization impedance,Rp,of the FSPed sample was 1534Ω/cm^(2)in 3.5 wt.%NaCl aqueous solution,which was 71.4%greater than that of the as-cast sample.The corrosion morphology of the FSPed sample in 3.5 wt.%NaCl aqueous solution exhibited largely uniform corrosion,rather than severe localized corrosion characteristics,which further reduced the corrosion depth on the basis of reducing the corrosion current density.The results presented herein indicate that FSP is a viable technique for simultaneously improving the mechanical properties and corrosion resistance of the as-cast Mg-5Zn alloy.展开更多
The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The ...The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The better combination between strength(ultimate tensile strength: 295 MPa; yield strength: 224 MPa) and ductility(22.9%) can be obtained for the AM50 sheet rolled at the roll temperature of 200 °C with the roll speed of 5 m/min. The yield stress depends strongly on roll temperature, while the texture intensity in rolled sheets is more sensitive to roll speed during hot rolling. Increasing rolling temperature or roll speed can improve the mechanical anisotropy of AM50 rolled sheets.展开更多
In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolli...In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolling path greatly affects the annealed texture.The UR develops a texture with basal poles mainly distributing along the transverse direction(TD).By contrast,an ellipse-like(0002)texture with basal pole inclining largely away from the normal direction(ND)is developed after hot cross rolling and annealing.Therefore,the CR is an effective method to tailor the texture of the experimental alloy.Unfortunately,this ellipse-like texture could not reserve during the subsequent unidirectional hot rolling and annealing.Both UR and CR plates exhibit a strong planar mechanical anisotropy compared with the traditional unidirectional rolled plate.展开更多
Considerable studies on processed pure titanium and titanium alloys have proved the possibility of prop-erty anisotropy induced by crystallographic textures,but limited information is available for the intrinsic coupl...Considerable studies on processed pure titanium and titanium alloys have proved the possibility of prop-erty anisotropy induced by crystallographic textures,but limited information is available for the intrinsic coupling of matrix and reinforcement textures and their synergistic effect on property anisotropy in tita-nium matrix composite(TMCs).In the present work,an advanced EBSD/EDS coupling method was used to investigate the formation mechanism of primaryαand secondaryαtextures in the matrix alloy.It is revealed for the first time that the reinforcement TiB_(w)displays a{100}<010>texture after hot rolling and has little effect on the matrix texture component but weakens texture intensity.Significant anisotropies in the tensile strength and ductility can be all noted at room and high-temperatures,which is the syn-ergistic effect of the matrix texture and the aligned TiB_(w).The mean Schmid factor of each slip system was calculated to evaluate the influence of matrix texture on the minimum active stress of slip deforma-tion in the different tensile directions.The analysis shows that the strong T-type matrix texture results in higher strength but lower ductility when loaded in the transverse direction.Moreover,a generalized shear-lag model was modified to quantitatively evaluate the strengthening contribution of aligned TiB_(w),which decreases with increasing off-axis angle and test temperature.A new parameter,defined as the critical aspect ratio of the off-axis whisker,was proposed to rationalize why the TiB_(w) failure mechanism converts from TiB_(w) fracture to TiB_(w)/matrix interfacial debonding with increasing off-axis angle and test temperature.展开更多
It is found that tensile flow curves of samples of annealed ultrafine-grained aluminum AA1090 show the development of a yield point and a significant mechanical anisotropy.To rationalize the anisotropic tensile behavi...It is found that tensile flow curves of samples of annealed ultrafine-grained aluminum AA1090 show the development of a yield point and a significant mechanical anisotropy.To rationalize the anisotropic tensile behavior,the orientation data of the annealed material were measured using electron backscatter microscopy.It is found that the inferior mechanical properties of samples tested at 45°to the rolling direction may be attributed to a strong rolling texture effect and that the anisotropic magnitude of the yield drop may be related to the proportion of grains with soft orientations(defined as those with Schmid factor greater than 0.45)in the sample.Additionally,it is found that the anisotropy in tensile ductility is in general agreement with a Considère criterion analysis and that the mechanical anisotropy in the samples is only partly explained by the crystallographic texture,where microstructural anisotropy may also play a role.展开更多
This study demonstrates the yield asymmetry in Mg-3Al-1Zn alloy containing both ND-texture(c-axis//ND(Normal direction))and TD-texture(c-axis//TD(Transverse direction))in a quantitative view.The results showed that th...This study demonstrates the yield asymmetry in Mg-3Al-1Zn alloy containing both ND-texture(c-axis//ND(Normal direction))and TD-texture(c-axis//TD(Transverse direction))in a quantitative view.The results showed that the yield asymmetry is strongly dependent on the distribution of bimodal texture components,on the basis of the successful establishment of the quantified relationship between pre-deformation parameters and texture components distribution.It’s meaningful for providing key reference to texture design.Mechanical behavior of bimodal textured Mg alloy under tension and compression was tested.CYS/TYS(compressive yield stress/tensile yield stress)equal to 1 is obtained,implying that the yield asymmetry is eliminated when two textures distribute at specific fractions.The corresponding mechanism for the texture-dependence of tension-compression yield asymmetry is revealed by the analysis of slip/twinning activities and a compound use of the activation stress difference of slip/twinning(ΔStress)and geometrical compatibility factor(m′)between neighboring grains.Balanced activity of{10■2}twinning and a quite similar boundary obstacle effect against slip/twinning transfer under tension and compression accounts for such good symmetry performance.展开更多
In this study,a reduced-order crystal plasticity finite element(CPFE)model was developed to study the effects of the microstructural morphology and crystallographic texture on the mechanical anisotropy of selective la...In this study,a reduced-order crystal plasticity finite element(CPFE)model was developed to study the effects of the microstructural morphology and crystallographic texture on the mechanical anisotropy of selective laser melted(SLMed)Ti-6Al-4V.First,both hierarchical and equiaxed microstructures in columnar prior grains were modeled to examine the influence of the microstructural morphology on mechanical anisotropy.Second,the effects of crystallographic anisotropy and textural variability on mechanical anisotropy were investigated at the granular and representative volume element(RVE)scales,respectively.The results show that hierarchical and equiaxed CPFE models with the same crystallographic texture exhibit the same mechanical anisotropy.At the granular scale,the significance of crystallographic anisotropy varies with different crystal orientations.This indicates that the present SLMed Ti-6Al-4V sample with weak mechanical anisotropy resulted from the synthetic effect of crystallographic anisotropies at the granular scale.Therefore,combinations of various crystallographic textures were applied to the reduced-order CPFE model to design SLMed Ti-6Al-4V with different mechanical anisotropies.Thus,the crystallographic texture is considered the main controlling variable for the mechanical anisotropy of SLMed Ti-6Al-4V in this study.展开更多
This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroid...This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroidizing annealing(MSHFA). To this end, the present study mainly employed stereo microscopy, Optical Metallurgical Microscopy(OMM), Scanning Electron Microscopy(SEM), and Electron Backscatter Diffraction(EBSD) to characterize and analyze the workpiece at each processing stage of MSHF while performing microhardness measurement and uniaxial tensile experiment to test and analyze the mechanical properties of the workpiece. Macro-structure observation showed that the simulation results of flow lines at each stage were consistent with the experimental results. Microscopic observation showed that, after MSHF, deformation gradually became less significant along the outward radial direction of the bearing ring. After MSHFA,the microstructures of the bearing ring became uniform, whereas primary carbides did not dissolve.The mechanical properties were better in the axial direction(AD) than in the radial(RD) and circumferential directions(CD) after MSHF due to the smaller grain width. After MSHFA, the mechanical properties in the ADs and CDs were better than those in the RDs, which was due to the large cross-sectional area of carbides along the flow-line direction.展开更多
The mitigation of mechanical anisotropy is observed in 2:17 type SmCo magnets by adjusting the Zr content This behavior is supposed to be closely related to the density of lamellar phase,the density of which is enhanc...The mitigation of mechanical anisotropy is observed in 2:17 type SmCo magnets by adjusting the Zr content This behavior is supposed to be closely related to the density of lamellar phase,the density of which is enhanced obviously with increasing Zr content.The other reasons which could cause the reduction of the mechanical anisotropy is discussed from the Zr-rich impurity phase to the atom substitutions and crystal lattice distortion.The observation of crack in nano scale that dearly forms angles of 60° and 90° with respect to the lamellar phase,indicates that the probable cleavage planes are crystal faces(1011) and(1010).The results of investigation can deepen the understanding of mechanical anisotropy and cleavage fracture in the SmCo magnets.展开更多
Through investigating and comparing microstructure and crystallographic texture of as-extruded Mg-14Li and Mg-14Li-6Zn-1Y(in wt%)alloys,the differences in their mechanical anisotropy were investigated.It revealed that...Through investigating and comparing microstructure and crystallographic texture of as-extruded Mg-14Li and Mg-14Li-6Zn-1Y(in wt%)alloys,the differences in their mechanical anisotropy were investigated.It revealed that the formation of I-phase(Mg3Zn6Y,icosahedral structure)can effectively refine grain size.Moreover,compared with Mg-14Li alloy,the texture type of Mg-14Li-6Zn-1Y alloy changed slightly,but its texture intensity decreased remarkably.As a result,the stronger texture contributed to the"normal"mechanical anisotropy of Mg-14Li alloy with higher tensile strength and a lower elongation ratio along transverse direction(TD)than those along extrusion direction(ED).However,for Mg-14Li-6Zn-1Y alloy,the zonal distribution of I-phase particles along ED caused"abnormal"mechanical anisotropy,i.e.higher tensile strength and better plasticity along ED.展开更多
Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y...Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y, icosahedral structure) could weaken the crystallographic texture and improve the me- chanical strength, the mechanical anisotropy in terms of strength remains in Mg-4%Li-6%Zn-1.2%Y alloy. Failure analysis indicates that for the Mg-4%Li alloy, the fracture surfaces of the tensile samples tested along transverse direction (TD) contain a large number of plastic dimples, whereas the fracture surface exhibits quasi-cleavage characteristic when tensile samples were tested along extrusion direction (ED). For the Mg-4%Li-6%Zn-I.2%Y alloy, typical ductile fracture surfaces can be observed in both "TD" and "ED" samples. Moreover, due to the zonal distribution of broken l-phase particles, the fracture surface of "TD" samples is characterized by the typical "woody fracture".展开更多
High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investi...High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investigated in the present study, with attentions to the evolution of γ/γ′ microstructure observed by scanning electron microscopy and the dislocation configuration characterized by transmission electron microscopy in each oriented specimen. At 1100 ℃/100 MPa as well as 900 ℃/445 MPa, the single crystal superalloy exhibits obvious stress rupture anisotropic behavior. The [001] oriented specimen has the longest rupture lifetime at 900 ℃/445 MPa, and the [111] oriented sample shows the best rupture strength at 1100 ℃/100 MPa. While the [011] oriented specimen presents the worst rupture lifetime at each testing condition, its stress rupture property at 1100 ℃/100 MPa is clearly improved, compared with900 ℃/445 MPa. The evident stress rupture anisotropy at 900 ℃/445 MPa is mainly attributed to the distinctive movement way of dislocations in each oriented sample. Whereas, at 1100 ℃/100 MPa, together with the individual dislocation configuration, the evolution of γ/γ′ microstructure in each orientation also plays a key role in the apparent stress rupture anisotropy.展开更多
Direct laser metal deposition is a kind of advanced rapid manufacturing technology, which can produce near net shape parts by depositing metal powders layer by layer. This study demonstrates fabrication, the anisotrop...Direct laser metal deposition is a kind of advanced rapid manufacturing technology, which can produce near net shape parts by depositing metal powders layer by layer. This study demonstrates fabrication, the anisotropy of mechanical properties and hardness of a graded steel. The characteristics of constituent phases, microstructure, mechanical anisotropy, and microhardness were investigated using electron backscatter diffraction, optical microscopy, tensile test machine, and microhardness tester. It was found that the graded steel is dense and free of cracks. The crystal structures of the as-built samples evolved in three grades from fcc structures to fcc + bcc structures and then to bcc + fcc structures. Samples in x and z directions showed obvious mechanical anisotropy. The samples machined in x direction showed higher strength and lower elongation than those machined in z direction due to the presence of lack-of-fusion pores and the higher metallurgical bonding between layers in the x direction. The microhardness of the as-built samples increased along the cross section from the substrate (159.7 HV) to the top surface (545.4 HV).展开更多
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
基金financially supported by the National Natural Science Foundation of China(No.51875467,52005313)the National Science Fund for Distinguished Young Scholars of China(No.51625505)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)of China(No.2019TS-10)。
文摘Anisotropy of mechanical property is an important feature influencing the service performance of titanium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield strength along circumferential direction(CD),and larger elongation along rolling direction(RD),presenting significant anisotropy.Subsequently,the quantitative characteristics and underlying mechanism of the property anisotropy were revealed by analyzing the slip,damage and fracture behavior under the combined effects of the spun{0002}basal texture and fibrous microstructure for different loading directions.The results showed that the prismatic slip in primaryαgrain is the dominant deformation mechanism for both loading directions at the yielding stage.The prismatic slip is harder under CD loading,which makes CD loading present higher yield strength than RD loading.Additionally,the yield anisotropy can be quantified through the inverse ratio of the averaged Schmid Factor of the activated prismatic slip under different loading directions.As for the plasticity anisotropy,the harder and slower slip development under CD loading causes that the CD loading presents larger external force and normal stress on slip plane,thus leading to more significant cleavage fracture than RD loading.Moreover,the micro-crack path under RD loading is more tortuous than CD loading because the fibrous microstructure is elongated along RD,which may suppress the macro fracture under RD loading.These results suggest that weakening the texture and fibrous morphology of microstructure is critical to reduce the differences in slip,damage and fracture behavior along different directions,alleviate the property anisotropy and optimize the service performance of Ti alloy tube formed by hot flow forming.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB 18010401)the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+2 种基金the“135”Program of the Institute of Geochemistry of CASthe Hundred-Talent Program of CASthe National Natural Science Foundation of China(Grant Nos.41474078,41774099,and 41772042)
文摘The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
基金supported by the National Natural Science Foundation of China(Grant Nos.41977248 and 42207219)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(CAS)(Grant No.IGGCAS-201903).
文摘Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas.
基金Financial support from the projects by the NSFC [51771166]Chongqing Special Project of Science and Technology Innovation (cstc2020yszx-jcyj X0001)+5 种基金the Hebei Natural Science Foundation [E2019203452, E2021203011]the talent project of human resources and social security department of Hebei province [A202002002]the key project of department of education of Hebei province [ZD2021107]project of the central government guiding local science and technology development [216Z1001G]Cultivation Project for Basic Research and Innovation of Yanshan University [2021LGZD002]supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology [P2020-013]。
文摘In this paper, the relationship between anisotropic mechanical properties and the corresponding microstructure evolution of wrought magnesium alloys is critically reviewed. Experimental observations of the strong anisotropy(including the strength differential effect) induced by texture and twinning are discussed under different loading conditions(i.e., monotonic, cyclic and multiaxial loading). An accurate constitutive model is essential to describe the mechanical responses and to predict the forming performance considering engineering applications. Therefore, macroscale constitutive modeling of the anisotropy of magnesium alloys with directional distortional hardening are comprehensively reviewed with different approaches. To clarify the origin of the anisotropic behavior, physics-based mesoscale modeling of the anisotropy is also compared in detail.
文摘Many rock types have naturally occurring inherent anisotropic planes, such as bedding planes, foliation,or flow structures. Such characteristic induces directional features and anisotropy in rocks' strength anddeformational properties. The HoekeBrown (HeB) failure criterion is an empirical strength criterionwidely applied to rock mechanics and engineering. A direct modification to HeB failure criterion toaccount for rock anisotropy is considered as the base of the research. Such modification introduced a newdefinition of the anisotropy as direct parameter named the anisotropic parameter (Kb). However, thecomputation of this parameter takes much experimental work and cannot be calculated in a simple way.The aim of this paper is to study the trend of the relation between the degree of anisotropy (Rc) and theminimum value of anisotropic parameter (Kmin), and to predict the Kmin directly from the uniaxialcompression tests instead of triaxial tests, and also to decrease the amount of experimental work. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Funded by the National High Technical Research and Development Program of China(No.2013AA032403)the National Natural Science Foundation of China(No.51571023)Fundamental Rearch Funds for the Central Universities(No.FRFTP-15-051A3)
文摘We comparatively studied the mechanical properties anisotropy, microstructure and texture of the commercial and the new developed AA6111 alloys through tensile test, optical microscopy, and XRD analysis. The results show that the anisotropy of mechanical properties for the developed AA6111 alloy is lower than that of the commercial alloy. The developed alloy possesses higher r value, lower Ar value and more uniform microstructure, compared with the commercial AA6111 alloy, indicating that the deep drawability of the developed alloy has been improved significantly. The recrystallization textures of the two alloy sheets are also different. The recrystallization texture of the commercial alloy sheet mainly includes Cube and { 114}〈311〉 orientations, while the recrystallization texture of developed alloy sheet consists of Cube, Goss and R orientations. The relationships among the deep drawabilities, microstructure and texture were discussed thereafter.
基金financially supported by the National Natural Science Foundation of China(grant no.51705280 and 52035005)。
文摘Magnesium alloys are ideal lightweight materials;however,their applications are extremely limited due to their low strength,poor ductility,and weak corrosion resistance.In the present study,a friction stir processing(FSP)treatment was employed to optimize the mechanical properties and corrosion resistance of an as-cast Mg-5Zn alloy.The average grain size of the Mg-5Zn alloy was refined from 133.8μm to1.3μm as a result of FSP.Along different directions,FSP exhibited the enhancement effects on different mechanical properties.Furthermore,according to the potentiodynamic polarization results,the corrosion current density at the free-corrosion potential of the FSPed sample,was 4.1×10^(-6)A/cm^(2)in 3.5 wt.%Na Cl aqueous solution,which was significantly lower than that of the as-cast sample.Electrochemical impedance spectroscopy revealed that the polarization impedance,Rp,of the FSPed sample was 1534Ω/cm^(2)in 3.5 wt.%NaCl aqueous solution,which was 71.4%greater than that of the as-cast sample.The corrosion morphology of the FSPed sample in 3.5 wt.%NaCl aqueous solution exhibited largely uniform corrosion,rather than severe localized corrosion characteristics,which further reduced the corrosion depth on the basis of reducing the corrosion current density.The results presented herein indicate that FSP is a viable technique for simultaneously improving the mechanical properties and corrosion resistance of the as-cast Mg-5Zn alloy.
基金Project (51204003) supported by the National Natural Science Foundation of ChinaProject (KJ2011A051) supported by the Scientific Research Foundation of Education Department of Anhui Province, China
文摘The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The better combination between strength(ultimate tensile strength: 295 MPa; yield strength: 224 MPa) and ductility(22.9%) can be obtained for the AM50 sheet rolled at the roll temperature of 200 °C with the roll speed of 5 m/min. The yield stress depends strongly on roll temperature, while the texture intensity in rolled sheets is more sensitive to roll speed during hot rolling. Increasing rolling temperature or roll speed can improve the mechanical anisotropy of AM50 rolled sheets.
基金the National Key Basic Research Program of China(2013CB632204)Natural Science Foundation of China(51671040).
文摘In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolling path greatly affects the annealed texture.The UR develops a texture with basal poles mainly distributing along the transverse direction(TD).By contrast,an ellipse-like(0002)texture with basal pole inclining largely away from the normal direction(ND)is developed after hot cross rolling and annealing.Therefore,the CR is an effective method to tailor the texture of the experimental alloy.Unfortunately,this ellipse-like texture could not reserve during the subsequent unidirectional hot rolling and annealing.Both UR and CR plates exhibit a strong planar mechanical anisotropy compared with the traditional unidirectional rolled plate.
基金financially supported by the National Natural Scienc e Foundation of China(Nos.U1602274,51875349,51871150 and 51821001)the National Key R&D Program of China(No.2018YFB1106403)+2 种基金the Medical Intersection Project of Shanghai Jiao Tong University(Nos.ZH2018QNA22 and YG2017QN28)the 111 Project(No.B16032)the Laboratory Innovative Research Pro-gram of Shanghai Jiao Tong University(No.17SJ-14).
文摘Considerable studies on processed pure titanium and titanium alloys have proved the possibility of prop-erty anisotropy induced by crystallographic textures,but limited information is available for the intrinsic coupling of matrix and reinforcement textures and their synergistic effect on property anisotropy in tita-nium matrix composite(TMCs).In the present work,an advanced EBSD/EDS coupling method was used to investigate the formation mechanism of primaryαand secondaryαtextures in the matrix alloy.It is revealed for the first time that the reinforcement TiB_(w)displays a{100}<010>texture after hot rolling and has little effect on the matrix texture component but weakens texture intensity.Significant anisotropies in the tensile strength and ductility can be all noted at room and high-temperatures,which is the syn-ergistic effect of the matrix texture and the aligned TiB_(w).The mean Schmid factor of each slip system was calculated to evaluate the influence of matrix texture on the minimum active stress of slip deforma-tion in the different tensile directions.The analysis shows that the strong T-type matrix texture results in higher strength but lower ductility when loaded in the transverse direction.Moreover,a generalized shear-lag model was modified to quantitatively evaluate the strengthening contribution of aligned TiB_(w),which decreases with increasing off-axis angle and test temperature.A new parameter,defined as the critical aspect ratio of the off-axis whisker,was proposed to rationalize why the TiB_(w) failure mechanism converts from TiB_(w) fracture to TiB_(w)/matrix interfacial debonding with increasing off-axis angle and test temperature.
基金Project(50971074)supported by the National Natural Science Foundation of China
文摘It is found that tensile flow curves of samples of annealed ultrafine-grained aluminum AA1090 show the development of a yield point and a significant mechanical anisotropy.To rationalize the anisotropic tensile behavior,the orientation data of the annealed material were measured using electron backscatter microscopy.It is found that the inferior mechanical properties of samples tested at 45°to the rolling direction may be attributed to a strong rolling texture effect and that the anisotropic magnitude of the yield drop may be related to the proportion of grains with soft orientations(defined as those with Schmid factor greater than 0.45)in the sample.Additionally,it is found that the anisotropy in tensile ductility is in general agreement with a Considère criterion analysis and that the mechanical anisotropy in the samples is only partly explained by the crystallographic texture,where microstructural anisotropy may also play a role.
基金co-supported by National Natural Science Foundation of China(51901202,52101132)Natural Science Foundation of Jiangsu Province(No.BK 20191442)。
文摘This study demonstrates the yield asymmetry in Mg-3Al-1Zn alloy containing both ND-texture(c-axis//ND(Normal direction))and TD-texture(c-axis//TD(Transverse direction))in a quantitative view.The results showed that the yield asymmetry is strongly dependent on the distribution of bimodal texture components,on the basis of the successful establishment of the quantified relationship between pre-deformation parameters and texture components distribution.It’s meaningful for providing key reference to texture design.Mechanical behavior of bimodal textured Mg alloy under tension and compression was tested.CYS/TYS(compressive yield stress/tensile yield stress)equal to 1 is obtained,implying that the yield asymmetry is eliminated when two textures distribute at specific fractions.The corresponding mechanism for the texture-dependence of tension-compression yield asymmetry is revealed by the analysis of slip/twinning activities and a compound use of the activation stress difference of slip/twinning(ΔStress)and geometrical compatibility factor(m′)between neighboring grains.Balanced activity of{10■2}twinning and a quite similar boundary obstacle effect against slip/twinning transfer under tension and compression accounts for such good symmetry performance.
基金supported by National Natural Science Founda-tion of China(Grant Nos.51971113,51905279,11972202)Zhe-jiang Provincial Natural Science Foundation of China(Grant No.LY21A020002).
文摘In this study,a reduced-order crystal plasticity finite element(CPFE)model was developed to study the effects of the microstructural morphology and crystallographic texture on the mechanical anisotropy of selective laser melted(SLMed)Ti-6Al-4V.First,both hierarchical and equiaxed microstructures in columnar prior grains were modeled to examine the influence of the microstructural morphology on mechanical anisotropy.Second,the effects of crystallographic anisotropy and textural variability on mechanical anisotropy were investigated at the granular and representative volume element(RVE)scales,respectively.The results show that hierarchical and equiaxed CPFE models with the same crystallographic texture exhibit the same mechanical anisotropy.At the granular scale,the significance of crystallographic anisotropy varies with different crystal orientations.This indicates that the present SLMed Ti-6Al-4V sample with weak mechanical anisotropy resulted from the synthetic effect of crystallographic anisotropies at the granular scale.Therefore,combinations of various crystallographic textures were applied to the reduced-order CPFE model to design SLMed Ti-6Al-4V with different mechanical anisotropies.Thus,the crystallographic texture is considered the main controlling variable for the mechanical anisotropy of SLMed Ti-6Al-4V in this study.
基金the financial support from the National Natural Science Foundation of China (No. 51974099)。
文摘This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroidizing annealing(MSHFA). To this end, the present study mainly employed stereo microscopy, Optical Metallurgical Microscopy(OMM), Scanning Electron Microscopy(SEM), and Electron Backscatter Diffraction(EBSD) to characterize and analyze the workpiece at each processing stage of MSHF while performing microhardness measurement and uniaxial tensile experiment to test and analyze the mechanical properties of the workpiece. Macro-structure observation showed that the simulation results of flow lines at each stage were consistent with the experimental results. Microscopic observation showed that, after MSHF, deformation gradually became less significant along the outward radial direction of the bearing ring. After MSHFA,the microstructures of the bearing ring became uniform, whereas primary carbides did not dissolve.The mechanical properties were better in the axial direction(AD) than in the radial(RD) and circumferential directions(CD) after MSHF due to the smaller grain width. After MSHFA, the mechanical properties in the ADs and CDs were better than those in the RDs, which was due to the large cross-sectional area of carbides along the flow-line direction.
基金supported by National Natural Science Foundation of China(51877094)Zhejiang Province Technology Application Research(2016C31027)Ningbo International Cooperation Project(2015D1009).
文摘The mitigation of mechanical anisotropy is observed in 2:17 type SmCo magnets by adjusting the Zr content This behavior is supposed to be closely related to the density of lamellar phase,the density of which is enhanced obviously with increasing Zr content.The other reasons which could cause the reduction of the mechanical anisotropy is discussed from the Zr-rich impurity phase to the atom substitutions and crystal lattice distortion.The observation of crack in nano scale that dearly forms angles of 60° and 90° with respect to the lamellar phase,indicates that the probable cleavage planes are crystal faces(1011) and(1010).The results of investigation can deepen the understanding of mechanical anisotropy and cleavage fracture in the SmCo magnets.
基金supported financially by the Strategic New Industry Development Special Foundation of Shenzhen (No. JCYJ20170306141749970)the National Natural Science Foundation of China (Nos.51871211 and 51701129)+3 种基金the Natural Science Foundation of Guangdong Province (No.2018A030313950)the funds of International Joint Laboratory for Light Alloys,the National Key Research and Development Program of China (Nos. 2017YFB0702001 and 2016YFB0301105)Liaoning BaiQianWan Talents Programthe Innovation Fund of Institute of Metal Research (IMR),Chinese Academy of Sciences (CAS)
文摘Through investigating and comparing microstructure and crystallographic texture of as-extruded Mg-14Li and Mg-14Li-6Zn-1Y(in wt%)alloys,the differences in their mechanical anisotropy were investigated.It revealed that the formation of I-phase(Mg3Zn6Y,icosahedral structure)can effectively refine grain size.Moreover,compared with Mg-14Li alloy,the texture type of Mg-14Li-6Zn-1Y alloy changed slightly,but its texture intensity decreased remarkably.As a result,the stronger texture contributed to the"normal"mechanical anisotropy of Mg-14Li alloy with higher tensile strength and a lower elongation ratio along transverse direction(TD)than those along extrusion direction(ED).However,for Mg-14Li-6Zn-1Y alloy,the zonal distribution of I-phase particles along ED caused"abnormal"mechanical anisotropy,i.e.higher tensile strength and better plasticity along ED.
基金supported by the National Natural Science Foundation of China projects under Nos. 51271183, 51171192 and 51301172the National Basic Research Program of China (973 Program) project under Grant No. 2013CB632205+3 种基金the National Key Research and Development Program of China project under Grant No. 2016YFB0301105Shenzhen Technology Innovation Plan (CXZZ20140419114548507 and CXZZ20140731091722497)Shenzhen Basic Research Project (JCYJ20150529162228734)the Innovation Fund of Institute of Metal Research (IMR),Chinese Academy of Sciences (CAS)
文摘Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y, icosahedral structure) could weaken the crystallographic texture and improve the me- chanical strength, the mechanical anisotropy in terms of strength remains in Mg-4%Li-6%Zn-1.2%Y alloy. Failure analysis indicates that for the Mg-4%Li alloy, the fracture surfaces of the tensile samples tested along transverse direction (TD) contain a large number of plastic dimples, whereas the fracture surface exhibits quasi-cleavage characteristic when tensile samples were tested along extrusion direction (ED). For the Mg-4%Li-6%Zn-I.2%Y alloy, typical ductile fracture surfaces can be observed in both "TD" and "ED" samples. Moreover, due to the zonal distribution of broken l-phase particles, the fracture surface of "TD" samples is characterized by the typical "woody fracture".
基金supported by the National High Technology Research and Development Program of China (“863 Program”,No. 20102014AA041701)the National Natural Science Foundation of China (No. 51331005) and (No. 51401210)
文摘High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investigated in the present study, with attentions to the evolution of γ/γ′ microstructure observed by scanning electron microscopy and the dislocation configuration characterized by transmission electron microscopy in each oriented specimen. At 1100 ℃/100 MPa as well as 900 ℃/445 MPa, the single crystal superalloy exhibits obvious stress rupture anisotropic behavior. The [001] oriented specimen has the longest rupture lifetime at 900 ℃/445 MPa, and the [111] oriented sample shows the best rupture strength at 1100 ℃/100 MPa. While the [011] oriented specimen presents the worst rupture lifetime at each testing condition, its stress rupture property at 1100 ℃/100 MPa is clearly improved, compared with900 ℃/445 MPa. The evident stress rupture anisotropy at 900 ℃/445 MPa is mainly attributed to the distinctive movement way of dislocations in each oriented sample. Whereas, at 1100 ℃/100 MPa, together with the individual dislocation configuration, the evolution of γ/γ′ microstructure in each orientation also plays a key role in the apparent stress rupture anisotropy.
基金financially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB1100204 and 2013ZX06002-002)the Shenyang Science and Technology Funded Project (Grant Nos. 17-29-2-00, Y17-1-031 and Z17-2-002)Financial support by the Youth Foundation of School of Stomatology, China Medical University (Grant No. K101593-17-05)
文摘Direct laser metal deposition is a kind of advanced rapid manufacturing technology, which can produce near net shape parts by depositing metal powders layer by layer. This study demonstrates fabrication, the anisotropy of mechanical properties and hardness of a graded steel. The characteristics of constituent phases, microstructure, mechanical anisotropy, and microhardness were investigated using electron backscatter diffraction, optical microscopy, tensile test machine, and microhardness tester. It was found that the graded steel is dense and free of cracks. The crystal structures of the as-built samples evolved in three grades from fcc structures to fcc + bcc structures and then to bcc + fcc structures. Samples in x and z directions showed obvious mechanical anisotropy. The samples machined in x direction showed higher strength and lower elongation than those machined in z direction due to the presence of lack-of-fusion pores and the higher metallurgical bonding between layers in the x direction. The microhardness of the as-built samples increased along the cross section from the substrate (159.7 HV) to the top surface (545.4 HV).