期刊文献+
共找到55,283篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis on the Contribution of Artificial Precipitation Enhancement Amount to Annual Water Resources in Liaoning
1
作者 班显秀 王吉宏 +1 位作者 胡伟 李帅彬 《Meteorological and Environmental Research》 CAS 2010年第10期69-70,100,共3页
Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed r... Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed region.And the calculation methods were developed to quantitatively determine the increase of rainfall due to artificial precipitation,and consequently ascertain the contribution of artificial rainfall amount to water resources. 展开更多
关键词 precipitation Artificial precipitation enhancement Assessment Amount of water resource China
下载PDF
Reconstructing the annual precipitation variation since 1899 based on tree-ring width in the western Hedong sandy land of Ningxia 被引量:3
2
作者 Wang, YaJun Gao, ShangYu +3 位作者 Ma, YuZhen Lu, RuiJie Sang, YanLi Meng, HongWei 《Journal of Arid Land》 SCIE 2010年第4期286-294,共9页
Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation a... Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years. 展开更多
关键词 Hedong sandy land of Ningxia tree-ring width annual precipitation CORRELATION
下载PDF
CHARACTERISTICS OF ZONAL ANOMALY OF ANNUAL PRECIPITATION IN THE NORTHEASTERN CHINA 被引量:2
3
作者 YANMin-hua DENGWei +1 位作者 CHENPan-qin LIANGLi-qiao 《Chinese Geographical Science》 SCIE CSCD 2004年第4期320-325,共6页
The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Emp... The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Empirical Orthogonal Function) methods and results are drawn in the standard relief maps with GIS technology for practical application. Data used in the study were obtained from 208 meteorological stations over the northeastern China from 1961 to 2001. EOF results show that the first 3 loading vectors could give entire spatial anomaly structure of annual precipitation. In the Northeast Plain including the Songneng Plain and the Liaohe Plain, there is a regional compatibility (whether wet or dry) of annual precipitation change and this precipitation pattern has occurred since the late 1980s to the present. There also exist annual precipitation patterns of wet (or dry) in south and dry (or wet) in north and wet (or dry) in east and dry (or wet) in west. REOF results display 8 principal precipitation anomaly areas by the first 8 rotated loading vectors: the west plain, the Liaodong hills, the Sanjiang Plain, the Liaoxi hills, the Changbai Mountains, the Hulun Buir Plateau, the southwest plateau and the Liaodong Peninsula. 展开更多
关键词 annual precipitation northeastern China zonal anomaly precipitation characteristics
下载PDF
Interannual and Interdecadal Variability of Winter Precipitation over China in Relation to Global Sea Level Pressure Anomalies 被引量:15
4
作者 Jianjun Xu Johnny C.L Chan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第5期914-926,共13页
Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the winter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show that the three lead... Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the winter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show that the three leading space-time modes correspond, in sequence, to winter rainfall anomalies over the reaches of the Yangtze River, the bend of the Yellow River, and the northeastern region of China. The three modes exhibit interannual oscillations with quasi-biennial and 8-year periods as well as interdecadal oscillations with 16- and 32-year periods. The interannual oscillation (【 10 years) occurs in phase over the different areas, and its maximum amplitude migrates northward considerably with prominent interdecadal variations. However, the interdecadal oscillations (10-32 years) are out of phase over the different regions, and the amplitude variations have the characteristics of stationary waves. The rainfall anomalies appear to be closely related to the anti-phase changes of mean sea-level pressure (SLP) over the Asian mainland and the North Pacific. When the SLP rises over the North Pacific and decreases over the Asian mainland, the precipitation over East China increases noticeably. The linkage between the rainfall over China and the SLP anomalies apparently results from the strength of the East Asian winter monsoon and its associated temperature and moisture advection. 展开更多
关键词 wavelet transform winter precipitation China SLP
下载PDF
Interannual Variability of Autumn Precipitation over South China and its Relation to Atmospheric Circulation and SST Anomalies 被引量:23
5
作者 牛宁 李建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第1期117-125,共9页
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and th... The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH. 展开更多
关键词 interannual variability autumn precipitation South China circulation anomaly sea surfacetemperature
下载PDF
INFLUENCES OF LOW-FREQUENCY MOISTURE TRANSPORTATION ON LOW FREQUENCY PRECIPITATION ANOMALIES IN THE ANNUALLY FIRST RAINY SEASON OF SOUTH CHINA IN 2010 被引量:1
6
作者 李丽平 许冠宇 +1 位作者 倪碧 柳艳菊 《Journal of Tropical Meteorology》 SCIE 2016年第S1期46-56,共11页
85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the p... 85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the precipitation of the first rain season and its relationships with moisture transport in South China,and channels of low-frequency water vapor transport and sources of low-frequency precipitation are revealed.The annually first raining season precipitation in 2010 is mainly controlled by 10-20 d and 30-60 d oscillation.The rainfall is more(interrupted) when the two low-frequency components are in the same peak(valley) phase,and the rainfall is less when they are superposed in the inverse phase.The 10-20 d low-frequency component of the moisture transport is more active than the 30-60 d.The10-20 d water vapor sources lie in the South India Ocean near 30° S,the area between Sumatra and Kalimantan Island(the southwest source),and the equatorial middle Pacific region(the southeast source),and there are corresponding southwest and southeast moisture transport channels.By using the characteristics of 10-20 d water vapor transport anomalous circulation,the corresponding low-frequency precipitation can be predicted 6 d ahead. 展开更多
关键词 LOW-FREQUENCY precipitation characteristics wavelet analysis LOW-FREQUENCY vapor sources annually annually FIRST RAINY SEASON of South China
下载PDF
Numerical Simulation of the Impact of Vegetation Index on the Interannual Variation of Summer Precipitation in the Yellow River Basin 被引量:7
7
作者 李伟平 薛永康 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第6期865-876,共12页
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carr... Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation. 展开更多
关键词 numerical simulation vegetation index interannual variation summer precipitation Yellow River basiu
下载PDF
INTERANNUAL VARIABILITY OF WINTER AND SPRING PRECIPITATION IN SOUTH CHINA AND ITS RELATION TO MOISTURE TRANSPORT 被引量:8
8
作者 吴蔚 温之平 +1 位作者 陈运光 崔少萍 《Journal of Tropical Meteorology》 SCIE 2013年第4期322-330,共9页
The interannual variability of winter and spring precipitation in South China(SC)and its relation to moisture transport are investigated by using the monthly precipitation data of NMIC,NCEP reanalysis datasets and NOA... The interannual variability of winter and spring precipitation in South China(SC)and its relation to moisture transport are investigated by using the monthly precipitation data of NMIC,NCEP reanalysis datasets and NOAA ERSST analysis datasets from 1960 to 2008.The results show that winter and spring precipitation in SC is less than normal from the 1960s to the start of the 1970s and from the end of the 1990s to the present.Most of rainfall anomalies on the whole regional scale of SC is well in phase during winter and spring,and the frequency of persistent drought is higher than that of persistent flood.Seasonal variations of moisture transport differences of SC between persistent drought and flood events are observed:the differences in winter are characterized by moisture transport from Bay of Bangle(BOB)and South China Sea(SCS),while differences in spring are characterized by that from SCS and North China(NC).There are two types of Ni o3.4 sea surface temperature anomaly(SSTA)related to persistent winter and spring drought(flood)events in SC,which are positive SSTA next to Ni o4(Ni o3)and negative SSTA next to Ni o3(Ni o4).Moreover,the variations of moisture transport from BOB and SC have important effects on persistent drought/flood in SC when the Ni o3.4 index is in the positive phase,while those from western North Pacific(WNP)-SC in winter and those from Philippine Sea(PHS)-SC and NC in spring primarily contribute to persistent drought/flood events in SC when the Ni o3.4 index is in the negative phase,and these stronger(weaker)moisture transports are observed in persistent flood(drought)during winter and spring regardless of the Ni o3.4 index.In conclusion,with the correlation between variations and distributions of Ni o3.4 SSTA and persistent drought/flood events in SC,moisture transport is responsible for the formation of precipitation anomalies.In addition,the moisture transport from SCS is most significantly correlated with persistent drought/flood events during winter and spring. 展开更多
关键词 INTERannual variability EEOF analysis WINTER and spring precipitation moisture transport sea surface temperature ANOMALY
下载PDF
Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation 被引量:4
9
作者 李薇 宇如聪 张学洪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第3期429-444,共16页
The Madden-Julian Oscillation (MJO) is investigated in two sets of 11-year records of observed precipitation, the daily mean Microwave Sounding Units (MSU) oceanic rainfall (Spencer, 1993) data and the pentad Climate ... The Madden-Julian Oscillation (MJO) is investigated in two sets of 11-year records of observed precipitation, the daily mean Microwave Sounding Units (MSU) oceanic rainfall (Spencer, 1993) data and the pentad Climate Prediction Center Merged Analysis of Precipitation (CMAP) data (Xie and Arkin, 1997). Obvious interannual variability is found in the MJO in the tropical Pacific. MJO is limited to the west of dateline in normal years while extends more east during the year of warm sea surface temperature (SST) appeared in the eastern Pacific (i.e., El Ni?o years of 1982–1983, 1986–1988, 1991–1992) and manifested in the central-eastern Pacific for several months. The most significant correlation between interannual variability of MJO in the central-eastern Pacific and SST was found in the vicinity of the Ni?o3 region. Forced by observed SST, CCM3 presents a realistic trend of interannual variability to MJO in the 11 years, with a smaller magnitude than that from the observation. Comparison between the two realizations of the CCM3 simulation, which are forced by weekly and monthly mean SST respectively, showed that the MJO activities resemble each other in central-eastern Pacific while there is discrepancy in the western Pacific. It is suggested that the interannual variability of MJO is controlled, to certain extent bythe powerful interannual variability of SST in the central-eastern Pacific. In the western Pacific, however, there were remarkable impacts of the intraseasonal oscillation of SST on the MJO, where there was active MJO around the year. The notable disagreement between simulated and observed MJO in the western Pacific may come from the lack of high frequency variation of SST force, or from the shortage of air sea interaction for the intraseasonal time scale. It might be of importance to the MJO which is unable to be represented in the atmospheric model. Key words Madden-Julian Oscillation - Precipitation - Sea surface temperature - Interannual variability This study was sponsored by Chinese Academy of Sciences under grant “Hundred Talents” for “Validation of Coupled Climate Models”, the National Natural Science Foundation of China (Grant No. 49823002), and Project G1999043808. 展开更多
关键词 Madden-Julian Oscillation precipitation Sea surface temperature Interannual variability
下载PDF
A PRELIMINARY STUDY ON THE QUALITY CONTROL METHOD FOR GUANGDONG GPS/PWV DATA AND ITS EFFECTS ON PRECIPITATION FORECASTS IN ITS ANNUALLY FIRST RAINING SEASON 被引量:3
10
作者 李昊睿 丁伟钰 +3 位作者 薛纪善 高郁东 张旭斌 黄华栋 《Journal of Tropical Meteorology》 SCIE 2016年第4期535-543,共9页
We first analyzed GPS precipitable water vapor(GPS/PWV) available from a ground-based GPS observation network in Guangdong from 1 August 2009 to 27 August 2012 and then developed a method of quality control before GPS... We first analyzed GPS precipitable water vapor(GPS/PWV) available from a ground-based GPS observation network in Guangdong from 1 August 2009 to 27 August 2012 and then developed a method of quality control before GPS/PWV data is assimilated into the GRAPES 3DVAR system. This method can reject the outliers effectively. After establishing the criterion for quality control, we did three numerical experiments to investigate the impact on the precipitation forecast with and without the quality-controlled GPS/PWV data before they are assimilated into the system.In the numerical experiments, two precipitation cases(on 6 to 7 May, 2010 and 27 to 28 April, 2012 respectively) that occurred in the annually first raining season of Guangdong were selected. The results indicated that after quality control,only the GPS/PWV data that deviates little from the NCEP/PWV data can be assimilated into the system, has reasonable adjustment of the initial water vapor above Guangdong, and eventually improves the intensity and location of 24-h precipitation forecast significantly. 展开更多
关键词 GRAPES 3DVAR quality control DATA assimilation GPS precipitable water vapor
下载PDF
Interannual variation of East Asian summer monsoon and its impacts on general circulation and precipitation 被引量:3
11
作者 于淑秋 施晓晖 林学椿 《Journal of Geographical Sciences》 SCIE CSCD 2009年第1期67-80,共14页
Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-... Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-August from 1951 to 2006, and focusing on the East Asia-West Pacific region (10°-80°N, 70°-180°E), interannual variation of East Asian summer monsoon (EASM) and its correlations with general circulation and precipitation patterns are studied by using statistical diagnostic methods such as 9-point high pass filtering, empirical orthogonal function (EOF) analysis, composite analysis and other statistical diagnosis, etc. It is concluded as follows: (1) EOF analysis of SLP in the East Asia-West Pacific region shows the existence of the zonal dipole oscillation mode (APD) between the Mongolia depression and the West Pacific high, and APD index can be used as an intensity index of EASM. (2) EOF analysis of GHT anomalies at 500 hPa in the East Asia-West Pacific region shows that the first EOF mode is characterized with an obvious meridional East Asian pattern (EAP), and EAP index can also be used as an EASM intensity index. (3) The composite analysis of high/low APD index years reveals the close correlation of APD index with EAP at 500 hPa (or 850 hPa). The study shows an obvious opposite correlation exists between APD index and EAP index with a correlation coefficient of -0.23, which passes the confidence test at 0.10 level. (4) Both APD and EAP indexes are closely correlated with precipitation during flood-prone season in China and precipitation rate over the East Asia-West Pacific region. The significant correlation area at 5% confidence level is mainly located from the southern area of the Yangtze River valley to the ocean around southern Japan, and the former is a positive correlation and the latter is a negative one. 展开更多
关键词 summer monsoon East Asia-West Pacific dipole East Asian Pattern precipitation
下载PDF
A Preliminary Study on the Global Land Annual Precipitation Associated with ENSO during 1948-2000 被引量:2
12
作者 施能 陈绿文 夏冬冬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第6期993-1003,共11页
The global land monthly precipitation data (PREC / L) are used to investigate the relation between the global land annual precipitation and ENSO during 1948-2000, and the results of composite analysis are tested with ... The global land monthly precipitation data (PREC / L) are used to investigate the relation between the global land annual precipitation and ENSO during 1948-2000, and the results of composite analysis are tested with Monte Carlo simulations. Results indicate that the global land annual precipitation was significantly reduced in large scale areas in warm event years; the areas were the equatorial West Pacific, North China; equatorial Central America; North Bengal Bay and Nepal; East Australia; West India and South Pakistan; the district east of the Lena River; West Europe; and Wilkes Land of Antarctica. In contrast to this, the areas where precipitation increased in warm event years were less, and mainly in Chile and Argentina of South America; Somali, Kenya, and Tanzania of East Africa; Turkey, Iraq, and Iran of the Middle East; Libya and Nigeria of North Africa; Namibia of Southwest Africa; and Botswana and Zimbabwe of southern Africa. Statistical tests show that in warm event years, the area where the land annual precipitation was reduced was larger than the area where the annual precipitation increased, and the reduction in precipitation was more significant than the increase. The results in this paper are compared with previous studies. It is also pointed out that the interdecadal change of ENSO had no significant effect on the interdecadal variation of precipitation in the above regions. However, the warm events of El Nino affected the droughts in East Australia and North China more after the 1980s than before. 展开更多
关键词 global precipitation ENSO global drought flood interdecadal change
下载PDF
Comparisons on seasonal and annual variations of δ^(18)O in precipitation 被引量:1
13
作者 ZHANGXinping YAOTandong 《Journal of Geographical Sciences》 SCIE CSCD 2004年第2期193-203,共11页
The spatial and temporal variations of stable oxygen isotope in precipitation on different time scales are analyzed according to the data from the IAEA/WMO stations with long survey series in the Northern Hemisphere. ... The spatial and temporal variations of stable oxygen isotope in precipitation on different time scales are analyzed according to the data from the IAEA/WMO stations with long survey series in the Northern Hemisphere. Temperature effect is mainly distributed in mid-high latitudes on seasonal scale except for Bamako and Addisababa stations. The δ 18 O/temperature slope displays the positive correlation against altitude for most of the statistical stations. Amount effect appears primarily in the region south of 30 o N and coastal areas. The δ 18 O/precipitation slope is indirectly proportional to precipitation amount. For some of the sampling stations at mid-high latitudes where their seasonal distribution of precipitation is contrary to that of temperature, coupled with temperature effect, the amount effect appears synchronistically. Either the temperature effect or the amount effect on seasonal scale, there are positive correlations to a certain extent between the annual weighted mean δ 18 O and the annual mean temperature for almost all the stations. The correlation between composite δ 18 O and temperature on spatial scale is much more marked, compared with that of individual station. There is a good agreement between 10-year moving average temperature curves I and II, with the values of the former all markedly smaller than corresponding ones of the latter, calculated by the monthly mean series group I and the annual mean series group II, respectively. However, two calculated d δ 18 O/d T curves display the distinct difference: the variation amplitude of slope series II is larger than that of slope series I. Both curves had similar ascending trend from the 1960s to the 1970s, and then, their variations display the anti-phase. Moreover, the analyses show that there is negative correlation between slope series II and temperature series II. However, the status is different for slope series I and temperature series I. Both series have contrary trend from the 1960s to the 1970s, whereas the same trend since the 1980s. 展开更多
关键词 precipitation stable isotope temperature effect amount effect seasonal change annual change
下载PDF
Innovative trend analysis of annual and seasonal precipitation in Ningxia,China 被引量:5
14
作者 YANG Huiling XIAO Hui +2 位作者 GUO Chunwei SUN Yue GAO Ruina 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第4期308-315,共8页
Based on daily rainfall data from 26 station records,spatial and temporal variations in annual and seasonal precipitation of different rainfall intensities from 1961 to 2018 in Ningxia,China are investigated using the... Based on daily rainfall data from 26 station records,spatial and temporal variations in annual and seasonal precipitation of different rainfall intensities from 1961 to 2018 in Ningxia,China are investigated using the innovative trend analysis(ITA)method.The results show that annual precipitation increases on the northern plain but decreases in the southern mountainous area.The increase in regional annual precipitation is mainly due to an increase in weak precipitation,while the decrease in regional annual rainfall is a result of a reduction in heavy precipitation.Lowintensity precipitation shows an upward trend,while high-intensity precipitation shows a downward trend.The variation trend of extreme precipitation is more obvious.The contributions of different types of extreme precipitation vary by season.During spring,the increase in regional rainfall is mainly caused by the increase in heavy precipitation,while the decrease in regional precipitation is mainly caused by the decrease in weak precipitation.During summer and autumn,the increase in regional precipitation is caused by the increase in light precipitation,while the reduction in regional rainfall is caused by the decrease in heavy precipitation.This study provides support for water resources planning and addressing droughts and floods. 展开更多
关键词 ITA precipitation trend analysis Ningxia
下载PDF
THE EFFECT OF EQUATORIAL CENTRAL PACIFIC SSTAS ON THE INTERANNUAL VARIATION OF PRECIPITATION OVER SOUTHWEST CHINA DURING SPRING 被引量:1
15
作者 余锦华 陈成 +1 位作者 方珂 张婉颖 《Journal of Tropical Meteorology》 SCIE 2017年第2期166-176,共11页
The interannual variations of rainfall over southwest China(SWC) during spring and its relationship with sea surface temperature anomalies(SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data f... The interannual variations of rainfall over southwest China(SWC) during spring and its relationship with sea surface temperature anomalies(SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data from 26 stations in SWC between 1961 and 2010, NCEP/NCAR re-analysis data, and Hadley global SST data. Sensitivity tests are conducted to assess the response of precipitation in SWC to SSTAs over two key oceanic domains, using the global atmospheric circulation model ECHAM5. The interannual variation of rainfall over SWC in spring is very significant.There are strong negative(positive) correlation coefficients between the anomalous precipitation over SWC and SSTAs over the equatorial central Pacific(the mid-latitude Pacific) during spring. Numerical simulations show that local rainfall in the northwest of the equatorial central Pacific is suppressed, and a subtropical anticyclone circulation anomaly is produced, while a cyclonic circulation anomaly in the mid-latitude western Pacific occurs, when the equatorial Pacific SSTAs are in a cold phase in spring. Anomalous northerly winds appear in the northeastern part of SWC in the lower troposphere. Precipitation increases over the Maritime Continent of the western equatorial Pacific, while a cyclonic circulation anomaly appears in the northwest of the western equatorial Pacific. A trough over the Bay of Bengal enhances the southerly flow in the south of SWC. The trough also enhances the transport of moisture to SWC. The warm moisture intersects with anomalous cold air over the northeast of SWC, and so precipitation increases during spring. On the interannual time scale, the impacts of the mid-latitude Pacific SSTAs on rainfall in SWC during spring are not significant, because the mid-latitude Pacific SSTAs are affected by the equatorial central Pacific SSTAs; that is,the mid-latitude Pacific SSTAs are a feedback to the circulation anomaly caused by the equatorial central Pacific SSTAs. 展开更多
关键词 southwest China spring precipitation interannual variability SSTAs ECHAM5 model
下载PDF
The Relationship between the Interdecadal Variation of Summer Precipitation and Its Interannual Variability over the Middle and Lower Reaches of the Yangtze River Valley 被引量:3
16
作者 FU Yuan-Hai 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期127-133,共7页
The intensity of summer precipitation interannual variability is strongest over the middle and lower reaches of the Yangtze River Valley(MLYRV). The variability is larger than 1.5 mm d–1 and up to 35%–40% of the cli... The intensity of summer precipitation interannual variability is strongest over the middle and lower reaches of the Yangtze River Valley(MLYRV). The variability is larger than 1.5 mm d–1 and up to 35%–40% of the climatological mean summer precipitation. The relationship between the interdecadal change in the intensity of summer precipitation and its interannual variability over this area is investigated, by analyzing five gauged and re-constructed precipitation datasets. The relationship is found to be very weak over the MLYRV, with a correlation coefficient of only approximately 0.10. The Pacific Decadal Oscillation influences the western North Pacific subtropical high, which is responsible for the interdecadal change in summer precipitation over the MLYRV. However, the precipitation interannual variability is closely related to the ENSO events in the preceding winter due to its impact on the meridional displacement of the East Asian westerly jet. Different physical mechanisms cause different interdecadal variation in the intensity of summer precipitation and its interannual variability, and thus result in a poor relationship. 展开更多
关键词 interdecadal variation interannual variability summer precipitation
下载PDF
A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique 被引量:4
17
作者 Kiyoumars ROUSHANGAR Farhad ALIZADEH 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1481-1497,共17页
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol... Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization. 展开更多
关键词 precipitation Discrete wavelet transform (DWT) K-MEANS Self Organizing Map(SOM) Iran
下载PDF
Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia 被引量:1
18
作者 XU Li-gang TANG Ying +1 位作者 DU Li BAO Zi-yun 《Meteorological and Environmental Research》 CAS 2011年第8期18-22,66,共6页
[Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitatio... [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of annual precipitation appeared 'North-south type' and 'North-center-south type'.It increased from north to south,the changes of interannual precipitation decreased from north to south.Precipitation changed significantly in month and distributed differently in the Yellow River irrigation area.But it was conversely steady in central arid zone and mountainous area of southern Ningxia.The probability of single abundant precipitation year was higher than single short precipitation year and the continuous short precipitation year was higher than continuous abundant precipitation year.The main cycles were 3a,6a and 10a approximately.In the mid arid zone and the mountainous area of southern Ningxia,the probability of precipitation reduction was about 75% and the Yellow river irrigation area,71.4%,respectively.The reduction in the entire area was about 73.3%.The annual precipitation in the middle arid area and irrigation area was increasing.The variability would change slowly for the intra-annual distribution of precipitation.Especially,the reduction tendency rate in the middle arid area reached 100.0%.[Conclusion] The study provided references for the effective utilization of the local precipitation,and the coordinated development of the regional social economy and ecological environment. 展开更多
关键词 precipitation Spatial structural patterns Multiple-time scale Temporal variation Trends analysis Ningxia China
下载PDF
Diversity on the Interannual Variations of Spring Monthly Precipitation in Southern China and the Associated Tropical Sea Surface Temperature Anomalies 被引量:3
19
作者 郭如月 潘蔚娟 +2 位作者 柯敏玲 魏维 王子谦 《Journal of Tropical Meteorology》 SCIE 2023年第3期337-346,共10页
There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteri... There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation. 展开更多
关键词 spring precipitation monthly diversity interannual variation southern China tropical sea surface temperature
下载PDF
The Application of Superimposed Marcov Chain for Prediction of Annual Precipitation
20
作者 LIAO Jie,HU Hao-ran,CHEN Gong Institute of Plateau Meteorology,China Meteorological Administration,Chengdu 610072,China 《Meteorological and Environmental Research》 CAS 2011年第11期5-7,共3页
[Objective] The aim was to predict the annual precipitation using the method of Superimposed Marcov Chain.[Method] Based on annual precipitation in Xiaojin station on western Sichuan Plateau during 1961-2010,the Super... [Objective] The aim was to predict the annual precipitation using the method of Superimposed Marcov Chain.[Method] Based on annual precipitation in Xiaojin station on western Sichuan Plateau during 1961-2010,the Superimposed Marcov Chain method was applied to predict annual precipitation from 2001 to 2010.The prediction based on the Superimposed Marcov Chain method was compared with the observed data.[Result] For the ten years (2001-2010),the relative error in 7 years was less than 10%,even less than 5% in 4 years,which proved that Superimposed Marcov Chain can predict annual precipitation.But this method had certain defect in prediction in the extreme dry or extreme wet years,and that needs to be improved in the following study.[Conclusion] The Superimposed Marcov Chain method had clear concept,was convenient to calculate,and provided a way to explore the improvement of precipitation prediction. 展开更多
关键词 Superimposed Markov Chain annual precipitation PREDICTION PLATEAU China
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部