This article presents a new method to calculate the composition differences (e) for tar g.etin.g the minimum total annualized cost (TAC) of a mass exchange network (MEN),which is based on the combination of comp...This article presents a new method to calculate the composition differences (e) for tar g.etin.g the minimum total annualized cost (TAC) of a mass exchange network (MEN),which is based on the combination of composition interval diagram (CID) with mathematical programming.The total cost target consists of the capital cost of the process units and the operating cost for mass separating agents (MS.As). The value of total cost varies considerablv with the composition differences, so the values of e should be optimized in order to obtain minimum TAC of a MEN. This articleconsiders ε as a set of unequal variables for each equilibrium equation of a rich-lean stream pair, employing them to build the CID and mathematical model, which optimizes the structure and composition differences simultaneously. Two examples are applied to illustrate the proposed method and the results demonstrate that the approach introduced by this article is simpler and more convenient than the methods in previous literatures.展开更多
A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analys...A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.展开更多
In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, ther...In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, there are relatively few degrees of freedom that can be manipulated in order to minimize the total annualized cost. The reflux ratio can influence the steady-state operating point and therefore influence the total annualized cost. The trade-offs between reflux ratios and total annualized cost were discussed. The Cuckoo optimization algorithm was applied to obtain a correlation for the optimum value of the reflux ratio as a power function of the economic parameters of energy price and capital cost. The results show that, at low energy price or high capital cost, the optimum reflux factor is high.展开更多
In order to explore the advantages of self-heat recuperative distillation(SHRD) process, the design and control of the SHRD process was studied for the separation of n-butanol and iso-butanol mixtures. The economic su...In order to explore the advantages of self-heat recuperative distillation(SHRD) process, the design and control of the SHRD process was studied for the separation of n-butanol and iso-butanol mixtures. The economic superiority of SHRD process is presented when a comparison on the total annual cost(TAC) of the conventional distillation process, the vapor recompression distillation process and the SHRD process was made. For the SHRD process, 37.74% and 11.35% savings of TAC can be achieved as compared to the conventional distillation process and vapor recompression distillation process, respectively. The dynamic characteristics of this promising SHRD sequence had been studied, and the dynamic responses demonstrated that 10% changes in both feed flow rate and feed composition can be well handled by the control strategy with dual-temperature control. It is proven that the SHRD system not only can provide economical savings but also can operate normally with good controllability.展开更多
Although the Combined Cooing,Heating and Power System(hereinafter referred to as“CCHP”)improves the capacity utilization rate and energy utilization efficiency,single use of CCHP system cannot realize dynamic matchi...Although the Combined Cooing,Heating and Power System(hereinafter referred to as“CCHP”)improves the capacity utilization rate and energy utilization efficiency,single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads.On the basis of user convenience and wide applicability of clean air energy,this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat,analyze trends of such parameters as gas consumption and power consumption of heat pump in line with adjustment of heating load proportion of combustion gas turbine,and optimize the system ratio in the method of annual costs and energy environmental benefit assessment.Based on the analysis of the hourly simulation and matching characteristics of the cold and hot load of the 100 thousand square meter building,it is found that the annual cost of the air source heat pump is low,but the energy and environmental benefits are poor.It will lead to 6.35%shortage of cooling load in summer.Combined with the evaluation method of primary energy consumption and zero carbon dioxide emission,the coupling system of CHHP and air source heat pump with 41%gas turbine load ratio is the best configuration.This system structure and optimization method can provide some reference for the development of CCHP coupling system.展开更多
The insulation thickness(IT)of double pipes buried in the soil(DPBIS)for district heating(DH)systems was optimized to minimize the annual total cost of DPBIS for DH systems.An optimization model to obtain the optimum ...The insulation thickness(IT)of double pipes buried in the soil(DPBIS)for district heating(DH)systems was optimized to minimize the annual total cost of DPBIS for DH systems.An optimization model to obtain the optimum insulation thickness(OIT)and minimum annual total cost(MATC)of DPBIS for DH systems was established.The zero point theorem and fsolve function were used to solve the optimization model.Three types of heat sources,four operating strategies,three kinds of insulation materials,seven nominal pipe size(NPS)values,and three buried depth(BD)values were considered in the calculation of the OIT and MATC of DPBIS for DH systems,respectively.The optimization results for the above factors were compared.The results show that the OIT and MATC of DPBIS for DH systems can be obtained by using the optimization model.Sensitivity analysis was conducted to investigate the impact of some economic parameters,i.e.,unit heating cost,insulation material price,interest rate,and insulation material lifetime,on optimization results.It is found out that the impact of sensitivity factors on the OIT and MATC of DPBIS for DH systems is different.展开更多
The traditional approach to solvent selction in the extractive distillation process strictly focuses on the change in the relative voltility of light-heavy components induced by the solvent.However,the total annual co...The traditional approach to solvent selction in the extractive distillation process strictly focuses on the change in the relative voltility of light-heavy components induced by the solvent.However,the total annual cost of the process may not be minimal when the solvent induces the largest change in relative volatility.This work presents a heuristic method for selecting the optimal solvent to minimize the total annual cost.The functional relationship between the relative volatility and the total annual cost is established,where the main factors,such as the relative volatility of the light-heavy components and the relative volatility of the heavy-component solvent,are taken into account.Binary azeotropic mixtures of methanol-toluene and methanol-acetone are separated to verify the feasibility of the model.The results show that using the solvent with the minimal two-column extractive distillation index,the process achieves a minimal total annual cost.The method is conducive for sustainable advancements in chemistry and engineering because a suitable solvent can be selected without simulation verification.展开更多
文摘This article presents a new method to calculate the composition differences (e) for tar g.etin.g the minimum total annualized cost (TAC) of a mass exchange network (MEN),which is based on the combination of composition interval diagram (CID) with mathematical programming.The total cost target consists of the capital cost of the process units and the operating cost for mass separating agents (MS.As). The value of total cost varies considerablv with the composition differences, so the values of e should be optimized in order to obtain minimum TAC of a MEN. This articleconsiders ε as a set of unequal variables for each equilibrium equation of a rich-lean stream pair, employing them to build the CID and mathematical model, which optimizes the structure and composition differences simultaneously. Two examples are applied to illustrate the proposed method and the results demonstrate that the approach introduced by this article is simpler and more convenient than the methods in previous literatures.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21276279,21476261)the Key Technologies Development Project of Qingdao Economic and Technological Development Zone(Grant No.2013-1-57)+1 种基金the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.14CX06108A).
文摘A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.
文摘In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, there are relatively few degrees of freedom that can be manipulated in order to minimize the total annualized cost. The reflux ratio can influence the steady-state operating point and therefore influence the total annualized cost. The trade-offs between reflux ratios and total annualized cost were discussed. The Cuckoo optimization algorithm was applied to obtain a correlation for the optimum value of the reflux ratio as a power function of the economic parameters of energy price and capital cost. The results show that, at low energy price or high capital cost, the optimum reflux factor is high.
基金Financial supports from the National Natural Science Foundation of China(Grant:21276279 and Grant:21476261)the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘In order to explore the advantages of self-heat recuperative distillation(SHRD) process, the design and control of the SHRD process was studied for the separation of n-butanol and iso-butanol mixtures. The economic superiority of SHRD process is presented when a comparison on the total annual cost(TAC) of the conventional distillation process, the vapor recompression distillation process and the SHRD process was made. For the SHRD process, 37.74% and 11.35% savings of TAC can be achieved as compared to the conventional distillation process and vapor recompression distillation process, respectively. The dynamic characteristics of this promising SHRD sequence had been studied, and the dynamic responses demonstrated that 10% changes in both feed flow rate and feed composition can be well handled by the control strategy with dual-temperature control. It is proven that the SHRD system not only can provide economical savings but also can operate normally with good controllability.
基金This research was funded by the research on rapid modeling methods for integrated energy systems,Grant No.SGTYHT/17-JS-204.
文摘Although the Combined Cooing,Heating and Power System(hereinafter referred to as“CCHP”)improves the capacity utilization rate and energy utilization efficiency,single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads.On the basis of user convenience and wide applicability of clean air energy,this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat,analyze trends of such parameters as gas consumption and power consumption of heat pump in line with adjustment of heating load proportion of combustion gas turbine,and optimize the system ratio in the method of annual costs and energy environmental benefit assessment.Based on the analysis of the hourly simulation and matching characteristics of the cold and hot load of the 100 thousand square meter building,it is found that the annual cost of the air source heat pump is low,but the energy and environmental benefits are poor.It will lead to 6.35%shortage of cooling load in summer.Combined with the evaluation method of primary energy consumption and zero carbon dioxide emission,the coupling system of CHHP and air source heat pump with 41%gas turbine load ratio is the best configuration.This system structure and optimization method can provide some reference for the development of CCHP coupling system.
基金This work was supported by the Scientific Research Project of Beijing Municipal Education Commission,China(KM 201810017004)the Engineering and Technology R&D Center of Clean Air Conditioning in Colleges of Shandong(Shandong Huayu University of Technology,China).
文摘The insulation thickness(IT)of double pipes buried in the soil(DPBIS)for district heating(DH)systems was optimized to minimize the annual total cost of DPBIS for DH systems.An optimization model to obtain the optimum insulation thickness(OIT)and minimum annual total cost(MATC)of DPBIS for DH systems was established.The zero point theorem and fsolve function were used to solve the optimization model.Three types of heat sources,four operating strategies,three kinds of insulation materials,seven nominal pipe size(NPS)values,and three buried depth(BD)values were considered in the calculation of the OIT and MATC of DPBIS for DH systems,respectively.The optimization results for the above factors were compared.The results show that the OIT and MATC of DPBIS for DH systems can be obtained by using the optimization model.Sensitivity analysis was conducted to investigate the impact of some economic parameters,i.e.,unit heating cost,insulation material price,interest rate,and insulation material lifetime,on optimization results.It is found out that the impact of sensitivity factors on the OIT and MATC of DPBIS for DH systems is different.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.21776145 and 21676152).
文摘The traditional approach to solvent selction in the extractive distillation process strictly focuses on the change in the relative voltility of light-heavy components induced by the solvent.However,the total annual cost of the process may not be minimal when the solvent induces the largest change in relative volatility.This work presents a heuristic method for selecting the optimal solvent to minimize the total annual cost.The functional relationship between the relative volatility and the total annual cost is established,where the main factors,such as the relative volatility of the light-heavy components and the relative volatility of the heavy-component solvent,are taken into account.Binary azeotropic mixtures of methanol-toluene and methanol-acetone are separated to verify the feasibility of the model.The results show that using the solvent with the minimal two-column extractive distillation index,the process achieves a minimal total annual cost.The method is conducive for sustainable advancements in chemistry and engineering because a suitable solvent can be selected without simulation verification.