Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where...Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where 18 blades were installed with chord length of 124.3 mm and height of 99 mm. A film hole with diameter of 4 mm, angled 28° to the tangential of the pressure surface in streamwise, was set in the middle span of the blade. The Reynolds number based on the outlet mainstream velocity and the blade chord length of the second stage varied from 1.52×105 to 2.00×105. All measurements were made with the blowing ratio varying from 0.3 to 3.0. Air and CO2 worked as coolant to achieve the coolant-to-mainstream density ratio of 1.03 and 1.57. The results show that the film coverage and cooling effectiveness scale up with the blowing ratio. Higher density ratio can generate larger film cooling coverage and effectiveness. The higher the Reynolds number, the larger the film coverage and cooling effectiveness.展开更多
This paper presents an experimental study of the three-dimensional turbulent flow fields in a lowspeed annular cascade of high turning angle turbine blades. Detailed measurements were performed on the blade surfaces a...This paper presents an experimental study of the three-dimensional turbulent flow fields in a lowspeed annular cascade of high turning angle turbine blades. Detailed measurements were performed on the blade surfaces and mid-streamsurface in the passage and at three axial planes downstream of the cascade by using wall static pressure taps, a five-hole probe and a hot-wire anemometer. The test data include static pressure distribution on blade surfaces, total pressure loss coefficient, mean flow velocity components, radial flow angle, turbulence intensity and Reynolds shear stress. Analyses of the three-dimensional cascade flow characteristics were made on the onset location of high loss vortices, the variation of pressure gradient inside the cascade passage and the properties of endwall boundary layers,total pressure loss distributions, secondary vortex turbulent dissipation and wake decay downstream of the cascade. These experimental results are valuable for revealing the details of the complex vortex flow structure in modern highly loaded axial turbomachines and validating the three-dimensional flow numerical computation codes.展开更多
基金the funding support from the construction of National 985 Program
文摘Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where 18 blades were installed with chord length of 124.3 mm and height of 99 mm. A film hole with diameter of 4 mm, angled 28° to the tangential of the pressure surface in streamwise, was set in the middle span of the blade. The Reynolds number based on the outlet mainstream velocity and the blade chord length of the second stage varied from 1.52×105 to 2.00×105. All measurements were made with the blowing ratio varying from 0.3 to 3.0. Air and CO2 worked as coolant to achieve the coolant-to-mainstream density ratio of 1.03 and 1.57. The results show that the film coverage and cooling effectiveness scale up with the blowing ratio. Higher density ratio can generate larger film cooling coverage and effectiveness. The higher the Reynolds number, the larger the film coverage and cooling effectiveness.
文摘This paper presents an experimental study of the three-dimensional turbulent flow fields in a lowspeed annular cascade of high turning angle turbine blades. Detailed measurements were performed on the blade surfaces and mid-streamsurface in the passage and at three axial planes downstream of the cascade by using wall static pressure taps, a five-hole probe and a hot-wire anemometer. The test data include static pressure distribution on blade surfaces, total pressure loss coefficient, mean flow velocity components, radial flow angle, turbulence intensity and Reynolds shear stress. Analyses of the three-dimensional cascade flow characteristics were made on the onset location of high loss vortices, the variation of pressure gradient inside the cascade passage and the properties of endwall boundary layers,total pressure loss distributions, secondary vortex turbulent dissipation and wake decay downstream of the cascade. These experimental results are valuable for revealing the details of the complex vortex flow structure in modern highly loaded axial turbomachines and validating the three-dimensional flow numerical computation codes.