The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. ...The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.展开更多
This paper .Studies power law no-Newtonian fluid rotative flow. in an annularpipe. The governing equation is nonlinear one, we linearized the governing equationby assuming that partial factor is at state. With Lapla...This paper .Studies power law no-Newtonian fluid rotative flow. in an annularpipe. The governing equation is nonlinear one, we linearized the governing equationby assuming that partial factor is at state. With Laplace transform we obtain ananalytical solution of the problem In the paper several groups of curves are given.these curves reflect the temporal change law and. spatial distribution of fluid velocity.In addition.we study the effection of power law index on the flow field the resultindicates that when the power law index n < l. the flow velocity is highly sensitive tothe index. and this fact is importanl in related engineering decisions.展开更多
The entrance region flow of a Herschel-Bulkley fluid in an annular cylinder has been investigated numerically without making prior assumptions on the form of velocity profile within the boundary layer region. This vel...The entrance region flow of a Herschel-Bulkley fluid in an annular cylinder has been investigated numerically without making prior assumptions on the form of velocity profile within the boundary layer region. This velocity distribution is determined as part of the procedure by cross sectional integration of the momentum differential equation for a given distance z from the channel entrance. Using the macroscopic mass and momentum balance equation, the entrance length at each cross section of the entrance region of the annuli and pressure distribution have been calculated for specific values of Herschel-Bulkley number and various values of aspect ratio and flow behavior index. The effects of non-Newtonian characteristics and channel width on the velocity profile, pressure distribution and the entrance length have been discussed.展开更多
This paper examines the steady thermocapillarybuoyant convection in a shallow annular pool subjected to a radial temperature gradient. A matched asymptotic theory is used to obtain the asymptotic solutions of the flow...This paper examines the steady thermocapillarybuoyant convection in a shallow annular pool subjected to a radial temperature gradient. A matched asymptotic theory is used to obtain the asymptotic solutions of the flow and thermal fields in the case of small aspect ratios,which is defined as the ratio of the layer thickness to the gap width. The flow domain is divided into the core region away from the cylinder walls and two end regions near each cylinder wall. Asymptotic solutions are obtained in the core region by solving the core and end flows separately and then joining them through matched asymptotic expansions. For the system of silicon melt,the asymptotic solutions are compared with the results of numerical simulations. It is found that the two kinds of solutions have a good agreement in the core region for a small aspect ratio. With the increase of aspect ratio,the applicability of the present asymptotic solutions decreases gradually.展开更多
A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and ...A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and a rigid cylindrical channel, is conveyed upwards inside the pipe. This configuration thus resembles of a pipe that aspirating fluid. The equation of planar mo- tion is solved by means of the differential quadrature method (DQM). Calculations are conducted for a slender drill-string-like and a bench-top-size system, for different confinement conditions of the outer annular channel. It is shown that the vibrations of these two systems are closely related to the degree of confinement of the outer annular channel. For a drill-string-like system with narrow annuli, buckling instability may occur in the second and third modes. For a bench-top-size system, however, both buckling and flutter may occur in the lowest three modes. The form of instability depends on the annuli size.展开更多
The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pip...The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is located.展开更多
磁流变阀是一种以磁流变液为工作介质的智能控制器件,其进出口压差可调且响应速度快的特点使其在减振抗震系统中具有广泛的应用前景。设计了一种典型的阻尼间隙为圆环流动式的圆环流磁流变阀,对其工作原理进行了阐述,同时推导了圆环流...磁流变阀是一种以磁流变液为工作介质的智能控制器件,其进出口压差可调且响应速度快的特点使其在减振抗震系统中具有广泛的应用前景。设计了一种典型的阻尼间隙为圆环流动式的圆环流磁流变阀,对其工作原理进行了阐述,同时推导了圆环流磁流变阀的压降数学模型。采用有限元法(FEM)和计算流体力学法(CFD)分别对圆环流磁流变阀的电磁场和流场进行了建模仿真,分析了不同电流下磁流变阀压降变化规律,仿真结果表明圆环流磁流变阀的压降随着加载电流的增大而增大,并且逐渐趋于饱和;同时采用FEM方法得到的最大压降为948 k Pa,采用CFD方法得到的最大压降为1 079 k Pa。搭建了圆环流磁流变阀压降性能试验台,对不同电流及不同负载下的磁流变阀压降性能进行了试验分析,并与仿真结果进行了对比,结果表明试验压降变化趋势与两种仿真方法得出的压降变化基本相符,试验测试得到的最大压降为662 k Pa。同时,试验结果表明外加负载对圆环流磁流变阀压降大小变化基本无影响。展开更多
基金supported by the National Natural Science Foundation of China (10972115)
文摘The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.
文摘This paper .Studies power law no-Newtonian fluid rotative flow. in an annularpipe. The governing equation is nonlinear one, we linearized the governing equationby assuming that partial factor is at state. With Laplace transform we obtain ananalytical solution of the problem In the paper several groups of curves are given.these curves reflect the temporal change law and. spatial distribution of fluid velocity.In addition.we study the effection of power law index on the flow field the resultindicates that when the power law index n < l. the flow velocity is highly sensitive tothe index. and this fact is importanl in related engineering decisions.
文摘The entrance region flow of a Herschel-Bulkley fluid in an annular cylinder has been investigated numerically without making prior assumptions on the form of velocity profile within the boundary layer region. This velocity distribution is determined as part of the procedure by cross sectional integration of the momentum differential equation for a given distance z from the channel entrance. Using the macroscopic mass and momentum balance equation, the entrance length at each cross section of the entrance region of the annuli and pressure distribution have been calculated for specific values of Herschel-Bulkley number and various values of aspect ratio and flow behavior index. The effects of non-Newtonian characteristics and channel width on the velocity profile, pressure distribution and the entrance length have been discussed.
基金supported by the National Natural Science Foundation of China (50776102)the Fundamental Research Funds for the Central Universities (CDJXS10142248)
文摘This paper examines the steady thermocapillarybuoyant convection in a shallow annular pool subjected to a radial temperature gradient. A matched asymptotic theory is used to obtain the asymptotic solutions of the flow and thermal fields in the case of small aspect ratios,which is defined as the ratio of the layer thickness to the gap width. The flow domain is divided into the core region away from the cylinder walls and two end regions near each cylinder wall. Asymptotic solutions are obtained in the core region by solving the core and end flows separately and then joining them through matched asymptotic expansions. For the system of silicon melt,the asymptotic solutions are compared with the results of numerical simulations. It is found that the two kinds of solutions have a good agreement in the core region for a small aspect ratio. With the increase of aspect ratio,the applicability of the present asymptotic solutions decreases gradually.
基金supported by the National Natural Science Foundation of China (Nos. 10772071 and 10802031)theScientific Research Foundation of HUST (No. 2006Q003B).
文摘A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and a rigid cylindrical channel, is conveyed upwards inside the pipe. This configuration thus resembles of a pipe that aspirating fluid. The equation of planar mo- tion is solved by means of the differential quadrature method (DQM). Calculations are conducted for a slender drill-string-like and a bench-top-size system, for different confinement conditions of the outer annular channel. It is shown that the vibrations of these two systems are closely related to the degree of confinement of the outer annular channel. For a drill-string-like system with narrow annuli, buckling instability may occur in the second and third modes. For a bench-top-size system, however, both buckling and flutter may occur in the lowest three modes. The form of instability depends on the annuli size.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772097 and 10972115)
文摘The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is located.
文摘磁流变阀是一种以磁流变液为工作介质的智能控制器件,其进出口压差可调且响应速度快的特点使其在减振抗震系统中具有广泛的应用前景。设计了一种典型的阻尼间隙为圆环流动式的圆环流磁流变阀,对其工作原理进行了阐述,同时推导了圆环流磁流变阀的压降数学模型。采用有限元法(FEM)和计算流体力学法(CFD)分别对圆环流磁流变阀的电磁场和流场进行了建模仿真,分析了不同电流下磁流变阀压降变化规律,仿真结果表明圆环流磁流变阀的压降随着加载电流的增大而增大,并且逐渐趋于饱和;同时采用FEM方法得到的最大压降为948 k Pa,采用CFD方法得到的最大压降为1 079 k Pa。搭建了圆环流磁流变阀压降性能试验台,对不同电流及不同负载下的磁流变阀压降性能进行了试验分析,并与仿真结果进行了对比,结果表明试验压降变化趋势与两种仿真方法得出的压降变化基本相符,试验测试得到的最大压降为662 k Pa。同时,试验结果表明外加负载对圆环流磁流变阀压降大小变化基本无影响。