Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using ...Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical nu- merical method is with great advantage in the computational efficiency. Moreover, study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.展开更多
The three-dimensional free vibration analysis of a multi-directional func- tionally graded piezoelectric (FGP) annular plate resting on two parameter (Pasternak) elastic foundations is investigated under different...The three-dimensional free vibration analysis of a multi-directional func- tionally graded piezoelectric (FGP) annular plate resting on two parameter (Pasternak) elastic foundations is investigated under different boundary conditions. The material properties are assumed to vary continuously along the radial and thickness directions and have exponent-law distribution. A semi-analytical approach named the state space based differential quadrature method (SSDQM) is used to provide an analytical solution along the thickness using the state space method (SSM) and an approximate solution along the radial direction using the one-dimensional differential quadrature method (DQM). The influence of the Winkler and shear stiffness of the foundation~ the material property graded variations, and the circumferential wave number on the nomdimensional natural frequency of multi-directional FGP annular plates is studied.展开更多
The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded tra...The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media. The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.展开更多
In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the...In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton's principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincare′ maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions,and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos.展开更多
For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral f...For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.展开更多
The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then...The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then the dynamic stiffness matrix of the finite annular plate element is established in closed form and checked by the direct stiffness method. The paper has given wide convcrage for decomposing the dynamic matrix into the power series of frequency square. By utilizing the axial symmetry of annular elements, the modes with different numbers of nodal diameters at s separately treated. Thus some terse and complete results are obtained as the foundation of structural characteristic analysis and dynamic response compulation.展开更多
General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only...General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only satisfy the governing equations at every point in the concerned region but also satisfy the prescribed boundary conditions at every point on the boundaries. Therefore, they are three-dimensional exact. Numerical results are finally tabulated.展开更多
Within the framework of three-dimensional elasticity theory,this paper investigates the thermal response of functionally graded annular plates in which the material can be transversely isotropic and vary along the thi...Within the framework of three-dimensional elasticity theory,this paper investigates the thermal response of functionally graded annular plates in which the material can be transversely isotropic and vary along the thickness direction in an arbitrary manner.The generalized Mian and Spencer method is utilized to obtain the analytical solutions of annular plates under a through-thickness steady temperature field.The present analytical solutions are validated through comparisons against those available in open literature.A parametric study is conducted to examine the effects of gradient distribution,different temperature fields,different diameter ratio and boundary conditions on the deformation and stress fields of the plate.The results show that these factors can have obvious effects on the thermo-elastic behavior of functionally gradient materials(FGM)annular plates.展开更多
The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external ...The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external Pressures, hole sizes,and rigidity ratios. A comparison is made with existing results for certain cases. Numerical investigation has been carried out with regard to the convergence of the solutions. It is found that accurate results are obtained with only nine or eleven grid points.展开更多
In the present paper, bending and stress analyses of two-directional functionally graded (FG) annular plates resting on non-uniform two-parameter Winkler-Pasternak founda- tions and subjected to normal and in-plane-...In the present paper, bending and stress analyses of two-directional functionally graded (FG) annular plates resting on non-uniform two-parameter Winkler-Pasternak founda- tions and subjected to normal and in-plane-shear tractions is investigated using the exact three- dimensional theory of elasticity. Neither the in-plane shear loading nor the influence of the two- directional material heterogeneity has been investigated by the researchers before. The solution is obtained by employing the state space and differential quadrature methods. The material proper- ties are assumed to vary in both transverse and radial directions. Three different types of variations of the stiffness of the foundation are considered in the radial direction: linear, parabolic, and sinu- soidal. The convergence analysis and the comparative studies demonstrate the high accuracy and high convergence rate of the present approach. A parametric study consisting of evaluating effects of different parameters (e.g., exponents of the material properties laws, the thickness to radius ratio, trends of variations of the foundation stiffness, and different edge conditions) is carried out. The results are reported for the first time and are discussed in detail.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10432030).
文摘Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical nu- merical method is with great advantage in the computational efficiency. Moreover, study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.
文摘The three-dimensional free vibration analysis of a multi-directional func- tionally graded piezoelectric (FGP) annular plate resting on two parameter (Pasternak) elastic foundations is investigated under different boundary conditions. The material properties are assumed to vary continuously along the radial and thickness directions and have exponent-law distribution. A semi-analytical approach named the state space based differential quadrature method (SSDQM) is used to provide an analytical solution along the thickness using the state space method (SSM) and an approximate solution along the radial direction using the one-dimensional differential quadrature method (DQM). The influence of the Winkler and shear stiffness of the foundation~ the material property graded variations, and the circumferential wave number on the nomdimensional natural frequency of multi-directional FGP annular plates is studied.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 10432030)the Natural Science Foun-dation of Zhejiang Province (No. Y605040)Ningbo City (No.2005A610024), China
文摘The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media. The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472239)the Hebei Provincial Natural Science Foundation of China(Grant No.A2015203023)the Key Project of Science and Technology Research of Higher Education of Hebei Province of China(Grant No.ZD20131055)
文摘In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton's principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincare′ maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions,and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos.
基金Project supported by the National Basic Research Program of China (No. 2007CB209400)the National Nature Fond (No. 50774077 and 50774081)the National Fond of Author of Doctor Thesis (100760)
文摘For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.
文摘The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then the dynamic stiffness matrix of the finite annular plate element is established in closed form and checked by the direct stiffness method. The paper has given wide convcrage for decomposing the dynamic matrix into the power series of frequency square. By utilizing the axial symmetry of annular elements, the modes with different numbers of nodal diameters at s separately treated. Thus some terse and complete results are obtained as the foundation of structural characteristic analysis and dynamic response compulation.
文摘General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only satisfy the governing equations at every point in the concerned region but also satisfy the prescribed boundary conditions at every point on the boundaries. Therefore, they are three-dimensional exact. Numerical results are finally tabulated.
基金supported by the National Natural Science Foundation of China (Grant 11872336)the Natural Science Foundation of Zhejiang Province, China (Grant LY18A020009).
文摘Within the framework of three-dimensional elasticity theory,this paper investigates the thermal response of functionally graded annular plates in which the material can be transversely isotropic and vary along the thickness direction in an arbitrary manner.The generalized Mian and Spencer method is utilized to obtain the analytical solutions of annular plates under a through-thickness steady temperature field.The present analytical solutions are validated through comparisons against those available in open literature.A parametric study is conducted to examine the effects of gradient distribution,different temperature fields,different diameter ratio and boundary conditions on the deformation and stress fields of the plate.The results show that these factors can have obvious effects on the thermo-elastic behavior of functionally gradient materials(FGM)annular plates.
基金the National Natural Science Foundation of China(No.51505445)the Key Subject“Computational Solid Mechanics”of the China Academy of Engineering Physics
文摘The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external Pressures, hole sizes,and rigidity ratios. A comparison is made with existing results for certain cases. Numerical investigation has been carried out with regard to the convergence of the solutions. It is found that accurate results are obtained with only nine or eleven grid points.
文摘In the present paper, bending and stress analyses of two-directional functionally graded (FG) annular plates resting on non-uniform two-parameter Winkler-Pasternak founda- tions and subjected to normal and in-plane-shear tractions is investigated using the exact three- dimensional theory of elasticity. Neither the in-plane shear loading nor the influence of the two- directional material heterogeneity has been investigated by the researchers before. The solution is obtained by employing the state space and differential quadrature methods. The material proper- ties are assumed to vary in both transverse and radial directions. Three different types of variations of the stiffness of the foundation are considered in the radial direction: linear, parabolic, and sinu- soidal. The convergence analysis and the comparative studies demonstrate the high accuracy and high convergence rate of the present approach. A parametric study consisting of evaluating effects of different parameters (e.g., exponents of the material properties laws, the thickness to radius ratio, trends of variations of the foundation stiffness, and different edge conditions) is carried out. The results are reported for the first time and are discussed in detail.