Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jar...Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.展开更多
This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are...This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies.展开更多
This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside th...This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside three distinct substrate types to improve wastewater treatment efficacy. The study examines the combination of two primary treatments with different substrate types in constructed wetlands (CW1, CW2, and CW3). The primary treatments include the existing wastewater treatment plant (WWTP) in Podgorica, involving coarse material removal through screens, inert material separation in aerated sand traps, and sediment and suspended matter removal in primary sedimentation tanks. The Extreme Separator (ExSep) was employed to evaluate its efficacy as a primary treatment method. The research demonstrates that the efficiency of CW can be significantly enhanced by selecting suitable primary treatment methods and substrates in Podgorica’s conditions. The most promising results were achieved by combining ExSep as a primary treatment with secondary treatment in CW-3. The removal efficiencies after CW3 for COD, BOD, and TSS exceeded 89%, 93%, and 91%, respectively. The outcomes underscore the significance of primary treatment in mitigating pollutant loads before discharge into the constructed wetlands, emphasizing potential areas for further optimization in wastewater treatment practices to enhance environmental sustainability and water quality management.展开更多
Inland wetlands in Abu Dhabi Emirate are wintering and stopover sites for migratory birds of prey. We conducted long-term regular monitoring surveys in Al Wathba Wetland Reserve (AWWR) from January 1995 to December 20...Inland wetlands in Abu Dhabi Emirate are wintering and stopover sites for migratory birds of prey. We conducted long-term regular monitoring surveys in Al Wathba Wetland Reserve (AWWR) from January 1995 to December 2022. Both diurnal and occasionally nocturnal surveys were undertaken to record the migratory raptors and owls in the Wetland Reserve. During the study, a total of 1282 regular monitoring visits were undertaken and 27 species of diurnal raptors and owls representing five families and three orders were detected. These represent 57% of the total species of birds of prey recorded in the UAE. Overall, 63% of all the species that we observed were Accipitriformes followed by 26% Falconiformes and 11% Strigiformes. We found that changes in mean daily temperature have a positive effect on raptor species diversity and abundance in the Wetland Reserve. The species encounter rate was higher in low temperature as compared to high temperature and overall regression equation was statistically significant F (4, 1126) = 8.49), p = 0.00). However, the numbers of raptors did not vary significantly across the years (p = 0.51). Western Marsh-harrier (Circus aeruginosus) and Greater Spotted Eagle (Clanga clanga) were recorded to be the most abundant species in the wetland reserve followed by Common Kestrel (Falco tinnunculus). However, the encounter rate of globally threatened Greater Spotted Eagle was detected to have significantly decreased since 2016. Moreover, 63% of the species detected were uncommon and rarely recorded such as 1) Saker Falcon 2) Lanner Falcon 3) Long-eared Owl & Merlin, which were the rare records from the wetland reserve. Furthermore, 27 years of regular monitoring in the wetland have yielded diverse diurnal raptors and owl fauna (H) = 0.83, (E) = 1.43 (Shannon Diversity Index). The results demonstrate that long-term monitoring surveys in arid environments are essential to determine the trends in the raptor populations and to document rare and globally important species.展开更多
Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were d...Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions.展开更多
High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemic...High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.展开更多
Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we exam...Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.展开更多
Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and use...Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands.The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth.Due to crab disturbance,nitrogen fuxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs.In summer,NH-N showed a positive flux from the sediment to the overlying water,but NO2-N and NOg-N showed positive fluxes from the sediment to the overlying water only in early stages.In winter,NH-N showed a positive flux from the sediment to the overlying water,but NO-N and NO,-N both exhibited positive and negative fluxes.These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.展开更多
The alpine terrestrials of the Maloti-Drakensberg in southern Africa play crucial roles in ecosystem functions and livelihoods,yet they face escalating degradation from various factors including overgrazing and climat...The alpine terrestrials of the Maloti-Drakensberg in southern Africa play crucial roles in ecosystem functions and livelihoods,yet they face escalating degradation from various factors including overgrazing and climate change.This study employs advanced Digital Soil Mapping(DSM)techniques coupled with remote sensing to map and assess wetland coverage and degradation in the northern Maloti-Drakensberg.The model achieved high accuracies of 96%and 92%for training and validation data,respectively,with Kappa statistics of 0.91 and 0.83,marking a pioneering automated attempt at wetland mapping in this region.Terrain attributes such as terrain wetness index(TWI)and valley depth(VD)exhibit significant positive correlations with wetland coverage and erosion gully density,Channel Network Depth and slope were negative correlated.Gully density analysis revealed terrain attributes as dominant factors driving degradation,highlighting the need to consider catchment-specific susceptibility to erosion.This challenge traditional assumptions which mainly attribute wetland degradation to external forces such as livestock overgrazing,ice rate activity and climate change.The sensitivity map produced could serve as a basis for Integrated Catchment Management(ICM)projects,facilitating tailored conservation strategies.Future research should expand on this work to include other highland areas,explore additional covariates,and categorize wetlands based on hydroperiod and sensitivity to degradation.This comprehensive study underscores the potential of DSM and remote sensing in accurately assessing and managing wetland ecosystems,crucial for sustainable resource management in alpine regions.展开更多
Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence...Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.展开更多
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro...With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.展开更多
Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAP...Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAPSE in patients with mitral valve replacement for rheumatic mitral stenosis patients is still under focused. Therefore, the objective of the study was to predict the outcome after MVR in rheumatic mitral stenosis patients in relation to preoperative TAPSE. This comparative cross-sectional study was conducted at the Department of Cardiac Surgery, National Heart Foundation Hospital and Research Institute. A total of 72 patients of rheumatic mitral stenosis patients who underwent mitral valve replacement were included in the study. They were divided into two groups: Group A and B. Group A included 36 patients with TAPSE 0.05) except for the preoperative TAPSE. Mean TAPSE of Group A was 13.17 (±1.40) and Group B was 18.61 (±1.57), the difference was statistically significant (p 0.05). Among the postoperative complications, including postoperative atrial fibrillation was higher in Group A (30.56%) than Group B (11.11%), mean ventilation time was higher in Group A (27.78%) than Group B (5.56%), length of intensive care was higher in Group A (33.33%) than Group B (11.12%), and hospital stay was higher in Group A (25.0%) than Group B (5.56%), (p < 0.05). Higher preoperative TASPE could be used as a prognostic tool for MVR in rheumatic mitral stenosis patients in our settings.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
The Sustainable Wetland Management adopted for this study depicts that, the identification of drivers and impacts is needed first, in other to get a clearer roadmap, after which the Kunming-Montreal Global Biodiversit...The Sustainable Wetland Management adopted for this study depicts that, the identification of drivers and impacts is needed first, in other to get a clearer roadmap, after which the Kunming-Montreal Global Biodiversity Framework would come into play to serve as a pathway for Sustainability. The study evaluates how Sierra Leone might implement the Framework’s proposed strategies in National Wetland Management. As a result, the research tried to thoroughly examine the factors that contribute to wetland degradation as well as the effects they have on the people who live nearby. The purposive sampling method was used to administer 385 structured questionnaires to inhabitants. The data was then processed in an Excel spreadsheet. Microsoft Publisher was used to draw the framework and a descriptive analysis was done. Results indicated that;the majority of the inhabitants of Aberdeen Creek are traders/self-employed, furthermore, the majority chose the place because it’s less expensive and nearer to the workplace, settlement expansion and pollution are the two most common degrading activities, while flooding and health-related issues are some of the consequences, and the Kunming-Montreal Global Biodiversity Framework is regarded to be a perfect tool for wetland management. It was concluded that to accomplish the objectives in the framework, it is necessary to have both political and social will. Satellite data and water quality research are further needed to validate the report.展开更多
In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants...In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants have different characteristics,and a scientific and rational selection and optimization of plant species is needed.This paper proposes an optimized plant selection and configuration scheme for urban water ecological restoration based on the ecological characteristics and pollutant removal performance of wetland plants.It analyzes the diversity,removal mechanisms,and configuration modes of wetland plants,taking into account ecology,aesthetics,and cost-effectiveness,to provide scientific evidence for wetland plant configuration and support water environment management decision-making.展开更多
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu...Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.展开更多
In the context of global degradation and loss of natural wetlands,waterbirds have been increasingly using artificial wetlands as alternative habitats.However,waterbirds are facing various threats in these artificial w...In the context of global degradation and loss of natural wetlands,waterbirds have been increasingly using artificial wetlands as alternative habitats.However,waterbirds are facing various threats in these artificial wetlands,due to dramatic environmental changes induced by anthropogenic activities.Exploring the effects of these changes on the temporal dynamics of the waterbird communities can help understand how waterbirds adapt to environmental changes and thus formulate effective management and conservation plans.In this study,we carried out field surveys on waterbirds and environmental factors across 20 subsidence wetlands created by underground coal mining in the Huainan coal mining area in the breeding seasons of 2016 and 2021.We predicted that the waterbird assemblages(i.e.,number of individuals,species richness,Shannon-Wiener diversity,Pielou evenness and species composition) differed between the two years,and that these differences were correlated with the temporal changes in environmental factors.Across the surveyed wetlands,we recorded 26 waterbird species in 2016 and 23 in 2021.For individual wetlands,the number of waterbird individuals and species richness increased by 71.6% and 20.1%,respectively,over the five years,with no changes in Shannon-Wiener diversity and Pielou evenness.The overall increase in the number of bird individuals was mainly caused by an increase in vegetation gleaners and gulls that adapt well to anthropogenic activities.The species composition was significantly different between the two years,which was mainly caused by changes in the number of individuals of dominant species under influence of changes in human activities.For most wetlands,the temporal pairwiseβ-diversities could be explained by species turnover rather than nestedness,probably due to high mobility of waterbird species and dramatic changes in local environments.Our study suggests that waterbird communities could respond to environmental changes in subsidence wetlands,providing important implications for waterbird conservation in human-dominated artificial wetlands.展开更多
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow...Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification.展开更多
Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a...Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.展开更多
基金support of the Yaque del Norte Water Fund(FAYN),INTEC(Grant No.CBA-330810-2020-P-1)Fondo Dominicano de Ciencia y Tecnologia(FONDOCYT)(Grant No.2022-2B2-161)。
文摘Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.
基金supported by China Geological Survey(DD20211301).
文摘This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies.
文摘This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside three distinct substrate types to improve wastewater treatment efficacy. The study examines the combination of two primary treatments with different substrate types in constructed wetlands (CW1, CW2, and CW3). The primary treatments include the existing wastewater treatment plant (WWTP) in Podgorica, involving coarse material removal through screens, inert material separation in aerated sand traps, and sediment and suspended matter removal in primary sedimentation tanks. The Extreme Separator (ExSep) was employed to evaluate its efficacy as a primary treatment method. The research demonstrates that the efficiency of CW can be significantly enhanced by selecting suitable primary treatment methods and substrates in Podgorica’s conditions. The most promising results were achieved by combining ExSep as a primary treatment with secondary treatment in CW-3. The removal efficiencies after CW3 for COD, BOD, and TSS exceeded 89%, 93%, and 91%, respectively. The outcomes underscore the significance of primary treatment in mitigating pollutant loads before discharge into the constructed wetlands, emphasizing potential areas for further optimization in wastewater treatment practices to enhance environmental sustainability and water quality management.
文摘Inland wetlands in Abu Dhabi Emirate are wintering and stopover sites for migratory birds of prey. We conducted long-term regular monitoring surveys in Al Wathba Wetland Reserve (AWWR) from January 1995 to December 2022. Both diurnal and occasionally nocturnal surveys were undertaken to record the migratory raptors and owls in the Wetland Reserve. During the study, a total of 1282 regular monitoring visits were undertaken and 27 species of diurnal raptors and owls representing five families and three orders were detected. These represent 57% of the total species of birds of prey recorded in the UAE. Overall, 63% of all the species that we observed were Accipitriformes followed by 26% Falconiformes and 11% Strigiformes. We found that changes in mean daily temperature have a positive effect on raptor species diversity and abundance in the Wetland Reserve. The species encounter rate was higher in low temperature as compared to high temperature and overall regression equation was statistically significant F (4, 1126) = 8.49), p = 0.00). However, the numbers of raptors did not vary significantly across the years (p = 0.51). Western Marsh-harrier (Circus aeruginosus) and Greater Spotted Eagle (Clanga clanga) were recorded to be the most abundant species in the wetland reserve followed by Common Kestrel (Falco tinnunculus). However, the encounter rate of globally threatened Greater Spotted Eagle was detected to have significantly decreased since 2016. Moreover, 63% of the species detected were uncommon and rarely recorded such as 1) Saker Falcon 2) Lanner Falcon 3) Long-eared Owl & Merlin, which were the rare records from the wetland reserve. Furthermore, 27 years of regular monitoring in the wetland have yielded diverse diurnal raptors and owl fauna (H) = 0.83, (E) = 1.43 (Shannon Diversity Index). The results demonstrate that long-term monitoring surveys in arid environments are essential to determine the trends in the raptor populations and to document rare and globally important species.
基金funded by the National Natural Science Foundation of China (Grant No. 91937301)the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0105)the National Natural Science Foundation of China (Grant Nos. 41975017, 41905010)。
文摘Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions.
基金National Research Foundation(NRF)Singapore,under its NRF Fellowship(Grant No.NRFNRFF11-2019-0002).
文摘High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.
基金The Key Research&Development Program of the Ministry of Science and Technology of China under contract No.2022YFC2807601the National Natural Science Foundation of China under contract Nos 41941008 and 41876221+3 种基金the Fund of Shanghai Science and Technology Committee under contract Nos 20230711100 and 21QA1404300the Impact and Response of Antarctic Seas to Climate Change funded by the Chinese Arctic and Antarctic Administration under contract No.IRASCC 1-02-01Bthe National Key Research and Development Program of China under contract No.2019YFC1509102the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University under contract No.21TQ1400201。
文摘Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.
基金supported by the National Natural Science Foundation of China(Grant No.52271273)the Open Foundation of the Key Laboratory of Ministry of Education for Coastal Disaster and Protection(Grant No.Z202201)。
文摘Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands.The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth.Due to crab disturbance,nitrogen fuxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs.In summer,NH-N showed a positive flux from the sediment to the overlying water,but NO2-N and NOg-N showed positive fluxes from the sediment to the overlying water only in early stages.In winter,NH-N showed a positive flux from the sediment to the overlying water,but NO-N and NO,-N both exhibited positive and negative fluxes.These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.
基金The Afromontane Research Unit of the University of the Free State partially funded this project.
文摘The alpine terrestrials of the Maloti-Drakensberg in southern Africa play crucial roles in ecosystem functions and livelihoods,yet they face escalating degradation from various factors including overgrazing and climate change.This study employs advanced Digital Soil Mapping(DSM)techniques coupled with remote sensing to map and assess wetland coverage and degradation in the northern Maloti-Drakensberg.The model achieved high accuracies of 96%and 92%for training and validation data,respectively,with Kappa statistics of 0.91 and 0.83,marking a pioneering automated attempt at wetland mapping in this region.Terrain attributes such as terrain wetness index(TWI)and valley depth(VD)exhibit significant positive correlations with wetland coverage and erosion gully density,Channel Network Depth and slope were negative correlated.Gully density analysis revealed terrain attributes as dominant factors driving degradation,highlighting the need to consider catchment-specific susceptibility to erosion.This challenge traditional assumptions which mainly attribute wetland degradation to external forces such as livestock overgrazing,ice rate activity and climate change.The sensitivity map produced could serve as a basis for Integrated Catchment Management(ICM)projects,facilitating tailored conservation strategies.Future research should expand on this work to include other highland areas,explore additional covariates,and categorize wetlands based on hydroperiod and sensitivity to degradation.This comprehensive study underscores the potential of DSM and remote sensing in accurately assessing and managing wetland ecosystems,crucial for sustainable resource management in alpine regions.
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42377217)the Cooperation Fund between Dongying City and Universities(No.SXHZ-2023-02-6).
文摘Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.
基金Under the auscpices of Shandong Provincial Natural Science Foundation (No.ZR2020QD090)Research Funds of Beijing VMinFull Limted (No.VMF2021RS)+1 种基金National Natural Science Foundation of China (No.42176221)Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YICE351030601)。
文摘With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.
文摘Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAPSE in patients with mitral valve replacement for rheumatic mitral stenosis patients is still under focused. Therefore, the objective of the study was to predict the outcome after MVR in rheumatic mitral stenosis patients in relation to preoperative TAPSE. This comparative cross-sectional study was conducted at the Department of Cardiac Surgery, National Heart Foundation Hospital and Research Institute. A total of 72 patients of rheumatic mitral stenosis patients who underwent mitral valve replacement were included in the study. They were divided into two groups: Group A and B. Group A included 36 patients with TAPSE 0.05) except for the preoperative TAPSE. Mean TAPSE of Group A was 13.17 (±1.40) and Group B was 18.61 (±1.57), the difference was statistically significant (p 0.05). Among the postoperative complications, including postoperative atrial fibrillation was higher in Group A (30.56%) than Group B (11.11%), mean ventilation time was higher in Group A (27.78%) than Group B (5.56%), length of intensive care was higher in Group A (33.33%) than Group B (11.12%), and hospital stay was higher in Group A (25.0%) than Group B (5.56%), (p < 0.05). Higher preoperative TASPE could be used as a prognostic tool for MVR in rheumatic mitral stenosis patients in our settings.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
文摘The Sustainable Wetland Management adopted for this study depicts that, the identification of drivers and impacts is needed first, in other to get a clearer roadmap, after which the Kunming-Montreal Global Biodiversity Framework would come into play to serve as a pathway for Sustainability. The study evaluates how Sierra Leone might implement the Framework’s proposed strategies in National Wetland Management. As a result, the research tried to thoroughly examine the factors that contribute to wetland degradation as well as the effects they have on the people who live nearby. The purposive sampling method was used to administer 385 structured questionnaires to inhabitants. The data was then processed in an Excel spreadsheet. Microsoft Publisher was used to draw the framework and a descriptive analysis was done. Results indicated that;the majority of the inhabitants of Aberdeen Creek are traders/self-employed, furthermore, the majority chose the place because it’s less expensive and nearer to the workplace, settlement expansion and pollution are the two most common degrading activities, while flooding and health-related issues are some of the consequences, and the Kunming-Montreal Global Biodiversity Framework is regarded to be a perfect tool for wetland management. It was concluded that to accomplish the objectives in the framework, it is necessary to have both political and social will. Satellite data and water quality research are further needed to validate the report.
基金supported by the National Key Research and Development Project[grant number 2020YFA0608902]the Natural Science Foundation of Guangdong Province[grant number 2023A1515010889].
基金2023 Beilin District Science and Technology Plan Project(Project No.GX2339)the 2024 Xi’an Science and Technology Plan Project(Project No.24GXFW0065).
文摘In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants have different characteristics,and a scientific and rational selection and optimization of plant species is needed.This paper proposes an optimized plant selection and configuration scheme for urban water ecological restoration based on the ecological characteristics and pollutant removal performance of wetland plants.It analyzes the diversity,removal mechanisms,and configuration modes of wetland plants,taking into account ecology,aesthetics,and cost-effectiveness,to provide scientific evidence for wetland plant configuration and support water environment management decision-making.
基金Project supported by the Knowledge Innovation Engineering Project of the Chinese Academy of Sciences(No. KSCX2-YW-N-46-06)the National Natural Science Foundation of China(No. 40501030).
文摘Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
基金the National Natural Science Foundation of China(grant 31970500 and 31770571)the Excellent Youth Project of the Anhui Natural Science Foundation(grant 2108085Y09)。
文摘In the context of global degradation and loss of natural wetlands,waterbirds have been increasingly using artificial wetlands as alternative habitats.However,waterbirds are facing various threats in these artificial wetlands,due to dramatic environmental changes induced by anthropogenic activities.Exploring the effects of these changes on the temporal dynamics of the waterbird communities can help understand how waterbirds adapt to environmental changes and thus formulate effective management and conservation plans.In this study,we carried out field surveys on waterbirds and environmental factors across 20 subsidence wetlands created by underground coal mining in the Huainan coal mining area in the breeding seasons of 2016 and 2021.We predicted that the waterbird assemblages(i.e.,number of individuals,species richness,Shannon-Wiener diversity,Pielou evenness and species composition) differed between the two years,and that these differences were correlated with the temporal changes in environmental factors.Across the surveyed wetlands,we recorded 26 waterbird species in 2016 and 23 in 2021.For individual wetlands,the number of waterbird individuals and species richness increased by 71.6% and 20.1%,respectively,over the five years,with no changes in Shannon-Wiener diversity and Pielou evenness.The overall increase in the number of bird individuals was mainly caused by an increase in vegetation gleaners and gulls that adapt well to anthropogenic activities.The species composition was significantly different between the two years,which was mainly caused by changes in the number of individuals of dominant species under influence of changes in human activities.For most wetlands,the temporal pairwiseβ-diversities could be explained by species turnover rather than nestedness,probably due to high mobility of waterbird species and dramatic changes in local environments.Our study suggests that waterbird communities could respond to environmental changes in subsidence wetlands,providing important implications for waterbird conservation in human-dominated artificial wetlands.
基金the National Natural Science Foundation of China(22178241,21908152 and 21978189)State Key Laboratory of Chemical Engineering,China(SKL-ChE-21A01).
文摘Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification.
基金Central Applied Research Laboratory(CARL)Center of Materials ResearchDepartment of Materials Science and Metallurgy,Shahid Bahonar University of Kerman(SBUK)for support of this work。
文摘Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.