期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
MESO-SUBSTITUTION REACTION OF ZINC OCTAETHYLPORPHYRIN VIA ANODIC OXIDATION
1
作者 Guo Zhang WU Hiu Kwong LEUNG Institute of Photographic Chemistry,Academia Sinica,Beijing 100012,CHINA 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第1期1-4,共4页
meso-Nitration,chlorination and acetoxylation of ZnOEP via anodic oxidation are reported to proceed via EE'C,ECE and EE'C mechanism respectively.
关键词 OEP Zn CL MESO-SUBSTITUTION reaction OF ZINC OCTAETHYLPORPHYRIN VIA ANODIC OXIDATION ECE VIA
下载PDF
Numerical Simulation for Crevice Corrosion of 304 Stainless Steel in Sodium Chloride Solution 被引量:7
2
作者 WANG Wei SUN Hu-yuan +2 位作者 SUN Li-juan SONG Zu-wei ZANG Bei-ni 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第5期822-828,共7页
The authors presented a mechanistic model describing the chemical reactions within a corroded thin, narrow crevice. In the mathematical model, a two-dimensional steady-state was used to predict the crevice pH profile ... The authors presented a mechanistic model describing the chemical reactions within a corroded thin, narrow crevice. In the mathematical model, a two-dimensional steady-state was used to predict the crevice pH profile by taking into account dissolved oxygen and hydrogen ions within the crevice. It consists of six parallel electrochemical reactions: multi anodic reactions(Fe, Cr, Ni dissolution reactions) and three cathodic reactions(the oxygen reduction, the hydrogen reaction and water dissociation). Current density distribution and oxygen concentration distribution were determined to be corresponding to the evolution of potential distribution within the crevice. The contribution of each metal reaction to the overall corrosion process was in proportion to the mole fraction, and the simulation pro vided a good agreement with published experimental results for the crevice corrosion of stainless steel in sodium chloride solution. 展开更多
关键词 Crevice corrosion Finite element method(FEM) Current density pH Multi anodic reaction
下载PDF
EQCM for In-depth Study of Metal Anodes for Electrochemical Energy Storage 被引量:2
3
作者 QIN Run-Zhi WANG Yan +2 位作者 ZHAO Qing-He YANG Kai PAN Feng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2020年第4期605-614,共10页
Electrochemical quartz crystal microbalance(EQCM)is a powerful tool to study the mass change and charge transfer during electrochemical process.The mass change on the electrode surface can be monitored with high preci... Electrochemical quartz crystal microbalance(EQCM)is a powerful tool to study the mass change and charge transfer during electrochemical process.The mass change on the electrode surface can be monitored with high precision and high sensitivity,making it possible to analyze the in-depth mechanism of electrode reactions.The application of metal anodes has exhibited great potential for the future energy storage devices for the elevated capacity.Herein,we review the research progress utilizing EQCM for metal anodes,including the deposition/dissolution process,the side reactions,the effect of additives,etc.Furthermore,we also put forward a perspective on research of the mechanism and performance improvement of metal anodes. 展开更多
关键词 EQCM LITHIUM ZINC anode reaction energy storage
原文传递
Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries 被引量:2
4
作者 Jian Wu Woon-Ming Lau Dong-Sheng Geng 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期307-320,共14页
Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life... Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life, low cost and safety is still underway. A number of cobalt-based compounds(Co(OH)_2, Co_3O_4, CoN, CoS,CoP, NiCo_2O_4, etc.) have been developed over the past years as promising anode materials for lithium ion batteries(LIBs) due to their high theoretical capacity, rich redox reaction and adequate cyclability. The LIBs performances of the cobalt-based compounds have been significantly improved in recent years, and it is anticipated that these materials will become a tangible reality for practical applications in the near future. However, the different types of cobalt-based compounds will result in diverse electrochemical performance. This review briefly analyzes recent progress in this field, especially highlights the synthetic approaches and the prepared nanostructures of the diverse cobalt-based compounds and their corresponding performances in LIBs, including the storage capacity, rate capability, cycling stability and so on. 展开更多
关键词 Lithium ion batteries anode materials Cobalt Conversion reaction
原文传递
Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials 被引量:5
5
作者 Li-Hua Zhang Si-Si Wu +5 位作者 Yi Wan Yi-Feng Huo Yao-Cong Luo Ming-Yang Yang Min-Chan Li Zhou-Guang Lu 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期442-448,共7页
Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffect... Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffective process for synthesizing Mn3O4/carbon nanotube(CNT) nanocomposites from recycled alkaline Zn–MnO2 batteries is presented. Manganese oxide was recovered from spent Zn–MnO2 battery cathodes. The Mn3O4/CNT nanocomposites were produced by ball milling the recovered manganese oxide in a commercial multi-wall carbon nanotubes(MWCNTs) solution. Scanning electron microscopy(SEM) analysis demonstrates that the nanocomposite has a unique three-dimensional(3D) bird nest structure. Mn3O4 nanoparticles are homogeneously distributed on MWCNT framework. Mn3O4/CNT nanocomposites were evaluated as an anode material for lithium-ion batteries, exhibiting a highly reversible specific capacitance of -580 mA h·g^-1 after 100 cycles. Moreover, Mn3O4/CNT nanocomposite also shows a fairly positive onset potential of -0.15 V and quite high oxygen reducibility when considered as an electrocatalyst for oxygen reduction reaction. 展开更多
关键词 Waste Zn–MnO2 batteries Recycling Nanocomposites anode materials Oxygen reduction reaction
原文传递
SnNi nanoneedles assembled 3D radial nanostructure loaded with SnNiPt nanoparticles: Towards enhanced electrocatalysis performance for methanol oxidation 被引量:2
6
作者 Hao Fang Yuting Chen +2 位作者 Ming Wen Qingsheng Wu Quanjing Zhu 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3929-3940,共12页
A desirable methanol oxidation electrocatalyst was fabricated by metal atom diffusion to form an alloy of an assembled three-dimensional (3D) radial nanostructure of SnNi nanoneedles loaded with SnNiPt nanoparticles... A desirable methanol oxidation electrocatalyst was fabricated by metal atom diffusion to form an alloy of an assembled three-dimensional (3D) radial nanostructure of SnNi nanoneedles loaded with SnNiPt nanoparticles (NPs).Herein,metal atom diffusion occurred between the SnNi support and loaded Pt NPs to form a SnNiPt ternary alloy on the catalyst surface.The as-obtained catalyst combines the excellent catalytic performance of the alloy and advantages of the 3D nanostructure;the SnNiPt NPs,which fused on the surface of the SnNi nanoneedle support,can dramatically improve the availability of Pt during electrocatalysis,and thus elevate the catalytic activity.In addition,the efficient mass transfer of the 3D nanostructure reduced the onset potential.Furthermore,the catalyst achieved a favorable CO poisoning resistance and enhanced stability.After atomic interdiffusion,the catalytic activity drastically increased by 45%,and the other performances substantially improved.These results demonstrate the significant advantage and enormous potential of the atomic interdiffusion treatment in catalytic applications. 展开更多
关键词 three-dimensional (3D) nanostructure SnNiPt ternary alloy electrocatalysis methanol oxidation reaction direct methanol fuel cell anode catalyst
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部