In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The el...In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The electrode prepared using a large applied current density showed an increased internal electroactive area and a significantly improved electrochemical performance.The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb(Ⅱ)and Cd(Ⅱ)in the range of 5–50 μg·L^(-1)were presented in combination with square wave stripping voltammetry in model solution.Compared with non-porous Bi film electrode,the dendritic Bi film electrode exhibited higher sensitivity and lower detection limit.The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.展开更多
The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedan...The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedance measurement. The results show that the growth of Pb(Ⅱ) oxide on the new Pb-Ca-Sn-Ce alloy surface is inhibited. The AC impedance measurement shows that resistance of the corrosion layer of novel Pb-Ca-Sn-Ce alloy decreases. It is found that the novel Pb-Ca-Sn-Ce alloy can encourage the development of PbO2 in the scale, and enhance the conductivity of the anodic scale. Hence the deep recycling properties of the battery can be expected better.展开更多
The composition and properties of the anodic films formed on Pb and Pb-3at.%Sb alloy at -0.10 V (vs. Hg/HgO) for 2.5 h in 0.1 mol.dm-3 NaOH solution (25℃) were investigated by cyclic voltammetry, linear sweep voltamm...The composition and properties of the anodic films formed on Pb and Pb-3at.%Sb alloy at -0.10 V (vs. Hg/HgO) for 2.5 h in 0.1 mol.dm-3 NaOH solution (25℃) were investigated by cyclic voltammetry, linear sweep voltammetry, open circuit decay curve, photocurrent technique, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the anodic film formed oh Pb mainly consists of t-PbO, while that on Pb-3at.%Sb consists of o-PbO, t-PbO and a small amount of orthorhombic Sb2O3. The dominant component of the film anodically grown on Pb-3at.%Sb for less than 5 min is o-PbO, however, t-PbO is the major component of the anodic film formed for 1 h or longer. It is established that Sb suppresses the growth of t-PbO. The anodic film formed on Pb-3at.%Sb is less porous than that on Pb. The bandgap energies of t-PbO and o-PbO in the films were determined by photocurrent measurements to be 1.83-1.84 eV and 2.60 eV, respectively.展开更多
利用线性电位扫描、恒电位阶跃、交流阻抗等方法分别研究了Pb Ca Bi合金被阳极或阴极极化后,表面上析氧、析氢以及合金腐蚀行为。结果表明:与Pb Ca合金相比,Pb Ca Bi合金可增加氧的析出,但抑制氢的析出,同时铋的加入,使Pb Ca耐蚀性提高...利用线性电位扫描、恒电位阶跃、交流阻抗等方法分别研究了Pb Ca Bi合金被阳极或阴极极化后,表面上析氧、析氢以及合金腐蚀行为。结果表明:与Pb Ca合金相比,Pb Ca Bi合金可增加氧的析出,但抑制氢的析出,同时铋的加入,使Pb Ca耐蚀性提高,且不同含量的铋对合金腐蚀有不同的影响。展开更多
The effects of samarium on the properties of the anodic Pb(II) oxides films formed on lead at 0 9 V (vs. Hg/Hg 2SO 4) in 4 5 mol/L H 2SO 4 solution were studied using linear sweep voltammetry (LSV), electrochemi...The effects of samarium on the properties of the anodic Pb(II) oxides films formed on lead at 0 9 V (vs. Hg/Hg 2SO 4) in 4 5 mol/L H 2SO 4 solution were studied using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and scanning electron micrographs (SEM). The experimental results show that adding Sm to lead metal can inhibit the growth of the Pb(II) oxides film effectively, and reduce the resistance of the PbO oxides film obviously. The addition of Sm increases the porosity of the anodic film, which may cause the increase of the ionic conductance produced by the interstitial liquid among the PbO particles in the film and lead to the decrease of the resistance of the anodic film.展开更多
基金Supported by the National Natural Science Foundation of China(51472073,51201058)
文摘In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The electrode prepared using a large applied current density showed an increased internal electroactive area and a significantly improved electrochemical performance.The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb(Ⅱ)and Cd(Ⅱ)in the range of 5–50 μg·L^(-1)were presented in combination with square wave stripping voltammetry in model solution.Compared with non-porous Bi film electrode,the dendritic Bi film electrode exhibited higher sensitivity and lower detection limit.The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.
文摘The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedance measurement. The results show that the growth of Pb(Ⅱ) oxide on the new Pb-Ca-Sn-Ce alloy surface is inhibited. The AC impedance measurement shows that resistance of the corrosion layer of novel Pb-Ca-Sn-Ce alloy decreases. It is found that the novel Pb-Ca-Sn-Ce alloy can encourage the development of PbO2 in the scale, and enhance the conductivity of the anodic scale. Hence the deep recycling properties of the battery can be expected better.
基金Project supported by the State Education Commission of China and the National Natural Science Foundation of China.
文摘The composition and properties of the anodic films formed on Pb and Pb-3at.%Sb alloy at -0.10 V (vs. Hg/HgO) for 2.5 h in 0.1 mol.dm-3 NaOH solution (25℃) were investigated by cyclic voltammetry, linear sweep voltammetry, open circuit decay curve, photocurrent technique, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the anodic film formed oh Pb mainly consists of t-PbO, while that on Pb-3at.%Sb consists of o-PbO, t-PbO and a small amount of orthorhombic Sb2O3. The dominant component of the film anodically grown on Pb-3at.%Sb for less than 5 min is o-PbO, however, t-PbO is the major component of the anodic film formed for 1 h or longer. It is established that Sb suppresses the growth of t-PbO. The anodic film formed on Pb-3at.%Sb is less porous than that on Pb. The bandgap energies of t-PbO and o-PbO in the films were determined by photocurrent measurements to be 1.83-1.84 eV and 2.60 eV, respectively.
文摘The effects of samarium on the properties of the anodic Pb(II) oxides films formed on lead at 0 9 V (vs. Hg/Hg 2SO 4) in 4 5 mol/L H 2SO 4 solution were studied using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and scanning electron micrographs (SEM). The experimental results show that adding Sm to lead metal can inhibit the growth of the Pb(II) oxides film effectively, and reduce the resistance of the PbO oxides film obviously. The addition of Sm increases the porosity of the anodic film, which may cause the increase of the ionic conductance produced by the interstitial liquid among the PbO particles in the film and lead to the decrease of the resistance of the anodic film.