期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries:A review
1
作者 Hua-ming YU Dong-ping CHEN +6 位作者 Li-jin ZHANG Shao-zhen HUANG Liang-jun ZHOU Gui-chao KUANG Wei-feng WEI Li-bao CHEN Yue-jiao CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3118-3150,共33页
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit... Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion battery anode/electrolyte interface zinc anode aqueous electrolyte electrolyte engineering electrolyte additives
下载PDF
Mitigated reaction kinetics between lithium metal anodes and electrolytes by alloying lithium metal with low-content magnesium
2
作者 Yang-Yang Wang Ya-Nan Wang +9 位作者 Nan Yao Shu-Yu Sun Xiao-Qing Ding Chen-Xi Bi Qian-Kui Zhang Zhao Zheng Cheng-Bin Jin Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期644-650,I0014,共8页
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv... Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes. 展开更多
关键词 Lithium metal anodes ALLOYING Anode/electrolyte interface Reaction kinetics Pouch cell
下载PDF
Interfacial chemistry of anode/electrolyte interface for rechargeable magnesium batteries
3
作者 Tiantian Wen Hui Xiao +9 位作者 Shuangshuang Tan Xueting Huang Baihua Qu Liuyue Cao Guangsheng Huang Jiangfeng Song Jingfeng Wang Aitao Tang Jili Yue Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2647-2673,共27页
Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte... Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs. 展开更多
关键词 Rechargeable magnesium batteries Interfacial chemistry Anode/electrolyte interface Mg plating/stripping Solid-electrolyte interphase
下载PDF
Deep removal of copper from nickel electrolyte using manganese sulfide
4
作者 李江涛 陈爱良 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3802-3807,共6页
Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the elect... Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent. 展开更多
关键词 MNS decoppering reagent copper removal manganese removal nickel anodic electrolyte
下载PDF
Electrochemical Behavior of Magnolol on FeWO4 Nanoflower Modified Carbon Paste Electrode
5
作者 胡卫兵 ZHANG Wen +2 位作者 SONG Nannan QU Wanyun HU Sheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第4期722-726,共5页
In order to establish a simple,sensitive,and fast reliable detection method to determine the magnolol,FeWO4 nanoflower was synthesised through a solvothermal technique and FeWO4 nanoflower modified carbon paste electr... In order to establish a simple,sensitive,and fast reliable detection method to determine the magnolol,FeWO4 nanoflower was synthesised through a solvothermal technique and FeWO4 nanoflower modified carbon paste electrode(CPE) was developed.The voltammetric behavior of magnolol on the modified electrodes was studied using cyclic voltammetry(CV),linear sweep voltammetry(LSV),and differential pulse voltammetry(DPV).The experimental results showed that the modified electrode remarkably enhanced the electrochemical response of the magnolol and exhibited a wide linear range for determination of the magnolol from 1.0×10-7 to 1.0×10-4 mol/L with a low detection limit of 5.0×10-8 mol/L. 展开更多
关键词 voltammetry Paste paste remarkably Modified graphite paraffin anodic electrolyte silica
下载PDF
Synergistic“Anchor‑Capture”Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode 被引量:5
6
作者 Zhen Luo Yufan Xia +9 位作者 Shuang Chen Xingxing Wu Ran Zeng Xuan Zhang Hongge Pan Mi Yan Tingting Shi Kai Tao Ben Bin Xu Yinzhu Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期265-280,共16页
While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further devel... While the rechargeable aqueous zinc-ion batteries(AZIBs)have been recognized as one of the most viable batteries for scale-up application,the instability on Zn anode–electrolyte interface bottleneck the further development dramatically.Herein,we utilize the amino acid glycine(Gly)as an electrolyte additive to stabilize the Zn anode–electrolyte interface.The unique interfacial chemistry is facilitated by the synergistic“anchor-capture”effect of polar groups in Gly molecule,manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn^(2+)in the local region.As such,this robust anode–electrolyte interface inhibits the disordered migration of Zn^(2+),and effectively suppresses both side reactions and dendrite growth.The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22%at 1 mA cm^(−2)and 0.5 mAh cm^(−2)over 500 cycles.Even at a high Zn utilization rate(depth of discharge,DODZn)of 68%,a steady cycle life up to 200 h is obtained for ultrathin Zn foils(20μm).The superior rate capability and long-term cycle stability of Zn–MnO_(2)full cells further prove the effectiveness of Gly in stabilizing Zn anode.This work sheds light on additive designing from the specific roles of polar groups for AZIBs. 展开更多
关键词 Zn anode–electrolyte interface Polar groups Synergistic“anchor-capture”effect Side reactions Dendrite growth
下载PDF
INFLUENCE OF MAGNETIC FIELD ON ACCURACY OF ECM BY CHANGING THE CONDUCTIVITY OF ANODE FILM 被引量:3
7
作者 FAN Zhijian ZHANG Lixin TANG lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期11-14,共4页
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve... The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis. 展开更多
关键词 Magnetic field Passive electrolyte Anode film Conductivity Magnetic assisted electrochemical machining(MAECM) Scanning electron microscopy(SEM)
下载PDF
Preparation and Electrochemical Properties of Pb-0.3wt%Ag/Pb-WC Composite Inert Anodes 被引量:1
8
作者 何世伟 徐瑞东 +2 位作者 WANG Jiong HAN Sha CHEN Buming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第4期811-817,共7页
We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical pro... We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical properties of the composite inert anodes,which were obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and WC concentrations from 0 g/L to 40 g/L in bath.The kinetic parameters of oxygen evolution,corrosion potential and corrosion current of the composite inert anodes were obtained in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 ℃,by measuring the anodic polarization curves,Tafel polarization curves and cyclic voltammetry curves.The results show that Pb-0.3wt% Ag/Pb-WC composite inert anodes obtained under forward pulse average current density of 3 A/dm2 and WC concentration of 30 g/L in an original acid plating bath,possess higher electrocatalytic activity of oxygen evolution,lower overpotential of oxygen evolution,better reversibility of electrode reaction and corrosion resistance in [ZnSO4+H2SO4] solution.The overpotential of oxygen evolution of the composite inert anode is 0.926 V under 500 A/m2 in [ZnSO4+H2SO4] solution,and 245 mV lower than that of Pb-1% Ag alloy;the corrosion current of the composite inert anode is 0.95×10-4A which is distinctly lower than that of Pb-1%Ag alloy,showing the excellent corrosion resistance. 展开更多
关键词 inert electrolyte anodic anode tungsten plating voltammetry carbide cathodic dispersed
下载PDF
The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes
9
作者 Nasr Bensalah Sondos Dbira Ahmed Bedoui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期115-123,共9页
In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond(BDD) anodes was investigated in different electrolytes. A complete mineraliz... In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond(BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in Na Cl;however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and Na Cl O4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine(Cl2, HCl O, Cl O-)electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density(≤ 10 m A/cm2) and neutral medium(p H in the range 6–9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. 展开更多
关键词 Electrolytic degradation Diamond anode Supporting electrolyte Mediated oxidation Cyanuric acid
原文传递
Electro-catalyzed multicomponent transformation of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one to 1,4-dihydropyrano[2,3-c]pyrazole derivatives in green medium
10
作者 Zahra Vafajoo Nourallah Hazeri +1 位作者 Malek Taher Maghsoodlou Hojat Veisi 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第8期973-976,共4页
An efficient and convenient synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives is described,using the electrogenerated anion of ethanol as the base in the presence of sodium bromide as an supporting electrolyte... An efficient and convenient synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives is described,using the electrogenerated anion of ethanol as the base in the presence of sodium bromide as an supporting electrolyte in a one-pot, three component condensation of malononitrile, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one. The reaction is carried out in an undivided cell containing an iron electrode as the cathode and a graphite electrode as the anode, at a constant current at room temperature. 展开更多
关键词 pyrazole catalyzed aldehydes aromatic condensation convenient electrolyte graphite cathode anode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部