期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
Selection of Anodic Material Used in Electrolytic Process for Producing Hypophosphorous Acid
1
作者 Fu Sheng WANG Bing Kui SONG +1 位作者 Xiao Li HAN Bao Gui ZHANG College of Environmental Science & Engineering, Nankai University, Tianjin 300071 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第12期1487-1490,共4页
Black lead, Ti-Ru and Ti-PbO_2 were used as anode and stainless steel was used as cathode.The electrolytic process of producing hypophosphorous acid with four-compartment electrodia1yticcell was studied. The compariso... Black lead, Ti-Ru and Ti-PbO_2 were used as anode and stainless steel was used as cathode.The electrolytic process of producing hypophosphorous acid with four-compartment electrodia1yticcell was studied. The comparison of some factors, such as anodic voltage, product concentrationand current efficiency, of black lead, Ti-Ru, and Ti-PbO_2 electrodes was conducted. As a result, theTi-PbO_2 electrode is the optimal anode material used, it can be in electrolytic proccss for producinghypophosphorous acid. 展开更多
关键词 Hypophosphorous acid ELECTROLYSIS anodic material.
下载PDF
Effect of tin addition on microstructure and electrochemical properties of rolled AZ61-Sn magnesium anodic materials
2
作者 WANG Ping LI Jianping GUOYongchun YANG Zhong XIA Feng WANG Jianli 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期639-643,共5页
Microstructure characterization, corrosion behavior, and electrochemical properties of magnesium anode materials containing 1-3 wt.% Sn in AZ61 alloy were studied by optical microscopy, X-ray diffraction (XRD), scan... Microstructure characterization, corrosion behavior, and electrochemical properties of magnesium anode materials containing 1-3 wt.% Sn in AZ61 alloy were studied by optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spec- troscopy (EDS), constant current method, potential polarization, and drainage. The results showed that amount of Mg2Sn phase increased, and recrystallization ratio of Sn-contained Mg alloys during rolling process was improved with increasing of Sn content. This resulted in uniform and refined gains. The results also demonstrated that discharge potential was improved and hydrogen release rate was reduced with the addition of Sn. As the current density increased, the release hydrogen rate was rising, owing to negative variance effect of magnesium alloys. The current efficiency gets to 87% at 20 mA/cm2. The main components of the corrosion products are easy-to-peel-off MgO and Al2O3 that can lead to more negative and stable work potential and accelerate battery reaction continuously. 展开更多
关键词 magnesium alloys anode material ROLLING seawater battery electrochemistry property
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
3
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
4
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 CELLULOSE Hard carbon Anode materials Rate performance Sodium-ion batteries
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
5
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
6
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) Anode material Sodium-ion battery Full cell
下载PDF
Sol-gel synthesis of nanometer silicon/silicon suboxide/carbon anode material
7
作者 QIN Tong WANG Zheng LI Zhengzheng 《Baosteel Technical Research》 CAS 2024年第2期12-18,共7页
A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning elec... A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability. 展开更多
关键词 sol-gel method nanometer silicon silicon suboxide anode material
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:15
8
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries Anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
下载PDF
Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
9
作者 范影强 陈秀娟 XU Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期490-495,共6页
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv... The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved. 展开更多
关键词 ZNO carbon coating anode material lithium-ion batteries
下载PDF
Two-dimensional dumbbell silicene as a promising anode material for(Li/Na/K)-ion batteries
10
作者 刘曼 程子爽 +7 位作者 张小明 李叶枫 靳蕾 刘丛 代学芳 刘影 王啸天 刘国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期28-34,共7页
Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode materia... Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory(DFT)calculations.Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene,and the energy barriers for Li/Na/K ion diffusion are as low as0.032 e V/0.055 e V/0.21 e V,indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene.Additionally,the average open circuit voltages of dumbbell silicene as anode for Li-ion,Na-ion,and K-ion batteries are 0.42 V,0.41 V,and 0.60 V,respectively,with corresponding storage capacities of 716 m Ah/g,622 m Ah/g,and 716 m Ah/g.These results suggest that dumbbell silicene is an ideal anode material for Li-ion,Na-ion,and K-ion batteries,with high capacity,low open circuit voltage,and high ion diffusion kinetics.Moreover,our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3,providing a valuable reference for subsequent theoretical calculations. 展开更多
关键词 dumbbell silicene density functional theory anode materials ion batteries
下载PDF
Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
11
作者 华叶 吴平 +5 位作者 万红 白书欣 龚瑾瑜 朱梦 白现臣 张广帅 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第9期82-90,共9页
In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diod... In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diode.The results show that the characteristics of diode are mainly determined by the cathode plasma motion under a 15 mm diode gap,in which the typical electron beam parameters are 280 kV,3.5 kA.When the diode gap is reduced to 5 mm,the voltage of the electron beam reduces to about 200 kV,and its current increases to more than 8.2 kA.It is calculated that the surface temperatures of Ti and Mo anodes are higher than their melting points.The diode plasma luminescence images show that Ti and Mo anodes produce plasmas soon after the bombardment of electron beams.Ti and Mo lines are respectively found in the plasma composition of Ti and Mo anode diodes.Surface melting traces are also observed on Ti and Mo anodes by comparing the micromorphologies before and after bombardment of the electron beam.These results suggest that the time of anode plasma generation is closely related to the anode material.Compared with graphite,metal Ti and Mo anodes are more likely to produce large amounts of plasma due to their more significant temperature rise effect.According to the moment that anode plasma begins to generate,the average expansion velocities of cathode and anode plasma are estimated by fitting the improved space-charge limited flow model.This reveals that generation and motion of the anode plasma significantly affect the characteristics of intense electron beam diode. 展开更多
关键词 anode material anode plasma intense electron beam plasma expanding velocity
下载PDF
The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries
12
作者 Jiahao Wang Jie Zhou +2 位作者 Zhengping Zhao Feng Chen Mingqiang Zhong 《Journal of Renewable Materials》 EI 2023年第8期3309-3332,共24页
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing... Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities. 展开更多
关键词 Batteries anode materials carbon nanofibers composites aerogel
下载PDF
Synthesis of Cu_2O/reduced graphene oxide composites as anode materials for lithium ion batteries 被引量:6
13
作者 颜果春 李新海 +3 位作者 王志兴 郭华军 张倩 彭文杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3691-3696,共6页
A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O ... A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g. 展开更多
关键词 cuprous oxide reduced graphene oxide anode material
下载PDF
Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery 被引量:3
14
作者 胡国荣 张新龙 彭忠东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2248-2253,共6页
The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure an... The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application. 展开更多
关键词 lithium-ion battery lithium titanate anode material DOPING
下载PDF
Effect of germanium on electrochemical performance of chain-like Co-P anode material for Ni/Co rechargeable batteries 被引量:1
15
作者 李佳佳 赵相玉 +4 位作者 杜伟 杨猛 马立群 丁毅 沈晓冬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2060-2065,共6页
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d... Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2. 展开更多
关键词 Co-P alloy GERMANIUM anode material electrochemical performance
下载PDF
Enhanced Li storage of pure crystalline-C_(60) and TiNb_(2)O_(7)-nanostructure composite for Li-ion battery anodes
16
作者 Injun Jeon Linghong Yin +5 位作者 Dingcheng Yang Hong Chen Seong Won Go Min Seung Kang Hyung Soo Ahn Chae-Ryong Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期478-485,I0010,共9页
We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b... We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials. 展开更多
关键词 Li-ion battery Anode material TiNb_(2)O_(7) nanofiber FULLERENE Electrochemical performance
下载PDF
Ultrasonic synthesis of CoO/graphene nanohybrids as high performance anode materials for lithium-ion batteries
17
作者 陈炳地 彭成信 崔征 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2517-2522,共6页
A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanopart... A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved. 展开更多
关键词 lithium-ion battery GRAPHENE COO anode material ultrasonic synthesis
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
18
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 Lithium-Ion Batteries Battery Construction Battery Characteristics Energy Storage Electrochemical Cells Anode materials Cathode materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Recent progress of advanced anode materials of lithium-ion batteries 被引量:17
19
作者 Hui Cheng Joseph G.Shapter +1 位作者 Yongying Li Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期451-468,I0011,共19页
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ... The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered. 展开更多
关键词 Anode materials LIBS NANOmaterialS Metal organic frameworks
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:7
20
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries Anode materials Carbon/carbon composite S doping Cyclic stability DFT calculation
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部