The kinetics of forming process of pulse current anodized film on AZ91D Mg alloy was studied by the voltage-time and thickness-time curves.The surface morphology,structure,elemental constitution and valences of the an...The kinetics of forming process of pulse current anodized film on AZ91D Mg alloy was studied by the voltage-time and thickness-time curves.The surface morphology,structure,elemental constitution and valences of the anodic films were analyzed by SEM,EDS,XPS and XRD respectively.The results show that the film-forming process can be divided into four stages.Formation of a dense layer before sparking is the first stage.Formation of a porous layer accompanied with slight sparking is the second stage.The third stage is characterized by fast growth of the porous layer accompanied with more intensive sparking.The fourth stage starts after the sparking process becomes even more vigorous and the pores become large.展开更多
Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of...Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.展开更多
Observation was carried out of the structure of sulphuric,oxalic or phosphoric film on Al after treatment of reanodizing and electrolytic depositing lubricant in (NH_4)_2MoS_4 solution,as well as of the deposited prod...Observation was carried out of the structure of sulphuric,oxalic or phosphoric film on Al after treatment of reanodizing and electrolytic depositing lubricant in (NH_4)_2MoS_4 solution,as well as of the deposited products by means of EMPA,TEM and energy spectro-scopic analysis.The deposited products are mixture of compounds of S and Mo rather than single MoS_2 and most of them dcposited near the surface layer of the film.Some regular long pores without barrier layer occurred in the film,but the regular fine channels without relation to the structural element parameters of original anodized film were found in the thickened barrier layer of phosphoric film.Sulphur may be remained as Mo sulphide in the film during heating under Ar protective environment.展开更多
The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and...The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.展开更多
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t...The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.展开更多
Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidat...Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.展开更多
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte...Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.展开更多
Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization...Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.展开更多
Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this...Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed.展开更多
Anodization of AZ91D magnesium alloy in the electrolyte solution of 0.5 mol/L of sodium silicate and 1.0 mol/L of potassium fluoride was investigated. The anodic films were characterized using optical microscopy (OM...Anodization of AZ91D magnesium alloy in the electrolyte solution of 0.5 mol/L of sodium silicate and 1.0 mol/L of potassium fluoride was investigated. The anodic films were characterized using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The corrosion resistance of the various anodized alloys was evaluated by a fast corrosion test using the solution of hydrochloric acid and potassium dichromate. The results showed that the addition of KF resulted in the presence of NaF in the anodic film. The thickness of the anodic film formed under a constant current density of 20 mA/cm^2 for 16 rain at 60℃ exceeded 100 gm. The growth of the anodic film could be divided into three stages based on the anodizing time; the growth rate was much faster during stage Ⅱ than in stages I and Ⅲ. The anodic film exhibited the highest corrosion resistance for the AZ91 alloy, which is attributed to the fact that the anodization was maintained until the end of stage Ⅱ.展开更多
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el...Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.展开更多
Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material...Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries.展开更多
Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powde...Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and galvanostatic tests. The electrochemical test showed an improved electrochemical performance of Zn0.82EMg0.18O thin film as an anode material for lithium ion batteries.展开更多
In this paper, the formation mechanism of the passive SEI film at the natural graphite anodes was investigated with tilt: electrochemical impedance spectroscopy (EIS). A characteristic semicircle was observed in the l...In this paper, the formation mechanism of the passive SEI film at the natural graphite anodes was investigated with tilt: electrochemical impedance spectroscopy (EIS). A characteristic semicircle was observed in the lower frequency range of the EIS spectrum for the irreversible charge process (lithium intercalation) at ca. 0.75V, 0.40V and 0.20V.展开更多
Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron...Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water.展开更多
The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-...The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-treatment and the composition of the mixed electrolyte have influence on the properties of the films and the anodizing oxidation process. Under the condition of controlled potential, the anodizing oxidation current—time response curve displays "saddle" shape. First, the current density reaches a peak value of 8-20 A/dm2 and then decreases rapidly, finally maintains at 1-2 A/dm2. The film prepared in the mixed electrolyte is of porous-type with 20 nm in pore size and 500 μm-2 in porosity. Compared with the conventional anodic film obtained in sulfuric acid, the pore wall of the porous layer prepared in this work is not continuous, which seems to be deposited by small spherical grains. This porous structure of the anodic film may result from the characteristics of the mixed electrolyte and the special anodizing oxidation process. The surface analysis displays that the anodic film is amorphous and composed of O, Al, C, P, S, Si and no copper element is detected.展开更多
TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning ...TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.展开更多
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve...The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
In order to fabricate titania nanotubes on glass substrate, Ti thin films (700-900 nm) were first deposited by radio-frequency(RF) magnetron sputtering and then anodized in an aqueous HF electrolyte solution at room t...In order to fabricate titania nanotubes on glass substrate, Ti thin films (700-900 nm) were first deposited by radio-frequency(RF) magnetron sputtering and then anodized in an aqueous HF electrolyte solution at room temperature. The morphology and structure of the nanotubes were identified by means of field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD). The effects of anodization parameters (concentration of electrolyte, applied voltage) on nanotube morphology were comprehensively investigated. The results show that the dense and crystalline Ti film can be obtained on the unheated glass substrate under the sputtering power of 150 W, and the anodization current and voltage play significant roles in the formation of titania nanotube with different tube sizes.展开更多
基金Project(03H51016)supported by the Aeronautical Science Research Foundation of ChinaProject(2032009)supported by the Natural Science Foundation of Beijing,China
文摘The kinetics of forming process of pulse current anodized film on AZ91D Mg alloy was studied by the voltage-time and thickness-time curves.The surface morphology,structure,elemental constitution and valences of the anodic films were analyzed by SEM,EDS,XPS and XRD respectively.The results show that the film-forming process can be divided into four stages.Formation of a dense layer before sparking is the first stage.Formation of a porous layer accompanied with slight sparking is the second stage.The third stage is characterized by fast growth of the porous layer accompanied with more intensive sparking.The fourth stage starts after the sparking process becomes even more vigorous and the pores become large.
基金Project supported by University New Materials Disciplines Construction Program of Beijing Region
文摘Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.
文摘Observation was carried out of the structure of sulphuric,oxalic or phosphoric film on Al after treatment of reanodizing and electrolytic depositing lubricant in (NH_4)_2MoS_4 solution,as well as of the deposited products by means of EMPA,TEM and energy spectro-scopic analysis.The deposited products are mixture of compounds of S and Mo rather than single MoS_2 and most of them dcposited near the surface layer of the film.Some regular long pores without barrier layer occurred in the film,but the regular fine channels without relation to the structural element parameters of original anodized film were found in the thickened barrier layer of phosphoric film.Sulphur may be remained as Mo sulphide in the film during heating under Ar protective environment.
文摘The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.
基金Project (SBZDPY-11-17) supported by the Fund on Key Laboratory Project for Hydrodynamic Force, Ministry of Education, China Project (SZD0502-09-0) supported by Key Disciplines of Materials Processing Engineering of Sichuan Province, China
文摘The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.
基金This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK2004129) the Aviation Science Foundation of China (No. 04H52059).
文摘Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.
文摘Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase.
文摘Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.
文摘Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed.
基金The work was financially supported by the National Natural Science Foundation of China (No.50541003) and the Aeronautic ScienceFoundation of China (No.04H51002).
文摘Anodization of AZ91D magnesium alloy in the electrolyte solution of 0.5 mol/L of sodium silicate and 1.0 mol/L of potassium fluoride was investigated. The anodic films were characterized using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The corrosion resistance of the various anodized alloys was evaluated by a fast corrosion test using the solution of hydrochloric acid and potassium dichromate. The results showed that the addition of KF resulted in the presence of NaF in the anodic film. The thickness of the anodic film formed under a constant current density of 20 mA/cm^2 for 16 rain at 60℃ exceeded 100 gm. The growth of the anodic film could be divided into three stages based on the anodizing time; the growth rate was much faster during stage Ⅱ than in stages I and Ⅲ. The anodic film exhibited the highest corrosion resistance for the AZ91 alloy, which is attributed to the fact that the anodization was maintained until the end of stage Ⅱ.
基金Project(50571003) supported by the National Natural Science Foundation of China
文摘Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.
基金supported by the 100 Talents Plan Foundation of Sun Yat-sen UniversityThousand Youth Talents Plan of China and Guangdong Province+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069)the NSFC Projects (22075321, 21821003 and 21890380)。
文摘Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries.
基金Financially supported by the Knowledge Innovation Program of Chinese Academy of Sciences, NNSFC (20831004 and 20771101)CAS Directional Program (No. KJCXZ-YW-M05)a funding from FJIRSM (SZD08002-3)
文摘Zn1-xMgxO (x = 0, 0.18) thin films were fabricated on the copper substrates by radiofrequency magnetron sputtering using the high pure argon as a sputtering gas. The Zn1-xMgxO films were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and galvanostatic tests. The electrochemical test showed an improved electrochemical performance of Zn0.82EMg0.18O thin film as an anode material for lithium ion batteries.
文摘In this paper, the formation mechanism of the passive SEI film at the natural graphite anodes was investigated with tilt: electrochemical impedance spectroscopy (EIS). A characteristic semicircle was observed in the lower frequency range of the EIS spectrum for the irreversible charge process (lithium intercalation) at ca. 0.75V, 0.40V and 0.20V.
基金Supported by the National Natural Science Foundation of China(No.51271012)
文摘Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water.
基金Project(06JJ4005) supported by the Natural Science Foundation of Hunan Province, China
文摘The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-treatment and the composition of the mixed electrolyte have influence on the properties of the films and the anodizing oxidation process. Under the condition of controlled potential, the anodizing oxidation current—time response curve displays "saddle" shape. First, the current density reaches a peak value of 8-20 A/dm2 and then decreases rapidly, finally maintains at 1-2 A/dm2. The film prepared in the mixed electrolyte is of porous-type with 20 nm in pore size and 500 μm-2 in porosity. Compared with the conventional anodic film obtained in sulfuric acid, the pore wall of the porous layer prepared in this work is not continuous, which seems to be deposited by small spherical grains. This porous structure of the anodic film may result from the characteristics of the mixed electrolyte and the special anodizing oxidation process. The surface analysis displays that the anodic film is amorphous and composed of O, Al, C, P, S, Si and no copper element is detected.
文摘TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.
基金National Defense Foundation of China (No.51318030401).
文摘The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
文摘In order to fabricate titania nanotubes on glass substrate, Ti thin films (700-900 nm) were first deposited by radio-frequency(RF) magnetron sputtering and then anodized in an aqueous HF electrolyte solution at room temperature. The morphology and structure of the nanotubes were identified by means of field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD). The effects of anodization parameters (concentration of electrolyte, applied voltage) on nanotube morphology were comprehensively investigated. The results show that the dense and crystalline Ti film can be obtained on the unheated glass substrate under the sputtering power of 150 W, and the anodization current and voltage play significant roles in the formation of titania nanotube with different tube sizes.