One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respec...One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respectively at φh″+|△φh| and φh″-|△φh|. The probability for △φh being positive (P+) can be derived based on the Cochran distribution in direct methods. Hence the SAD phase ambiguity can be resolved by multiplying the Gaussian function peaked at φh″+|△φh| with P+ and multiplying the Gaussian function peaked at φh″-|△φh| with P_ (=1- P+). The direct-method SAD h phasing has been proved powerful in breaking SAD phase ambiguities, in particular when anomalous-scattering signals are weak. However, the approximation of bimodal phase distributions by the sum of two Gaussian functions introduces considerable errors. In this paper we show that a much better approximation can be achieved by replacing the two Gaussian functions with two von Mises distributions. Test results showed that this leads to significant improvement on the efficiency of direct-method SAD-phasing.展开更多
Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructu...Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field.展开更多
The cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C and/or glutaryl 7 aminocephalosporanic acid to produce 7 aminocephalosporanic acid. The cephalosporin acylase from Pseudomonas sp. ...The cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C and/or glutaryl 7 aminocephalosporanic acid to produce 7 aminocephalosporanic acid. The cephalosporin acylase from Pseudomonas sp. strain 130 was crystallized in two different forms suitable for structural studies. A tetragonal crystal form diffracted to 0.24 nm belonged to the space group P4 12 12. There was one αβ heterodimer per asymmetric unit. A second crystal form diffracted to 0.21 nm belonged to the space group P2 1. There was four αβ heterodimers per asymmetric unit. The tetragonal crystal structure of CA 130 was determined using the multiwavelength anomalous diffraction method and the P2 1 crystal structure was then determined using the molecular replacement method.展开更多
基金Project supported by the Innovation Foundation of the Chinese Academy of Sciences and by the National Basic Research Program of China(Grant No.2002CB713801)
文摘One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respectively at φh″+|△φh| and φh″-|△φh|. The probability for △φh being positive (P+) can be derived based on the Cochran distribution in direct methods. Hence the SAD phase ambiguity can be resolved by multiplying the Gaussian function peaked at φh″+|△φh| with P+ and multiplying the Gaussian function peaked at φh″-|△φh| with P_ (=1- P+). The direct-method SAD h phasing has been proved powerful in breaking SAD phase ambiguities, in particular when anomalous-scattering signals are weak. However, the approximation of bimodal phase distributions by the sum of two Gaussian functions introduces considerable errors. In this paper we show that a much better approximation can be achieved by replacing the two Gaussian functions with two von Mises distributions. Test results showed that this leads to significant improvement on the efficiency of direct-method SAD-phasing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.32371280 and T2350011)。
文摘Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field.
基金Supported by the National Natural Science Foundation (No. 39970 15 5 ) the High- Technology Developm entProgram of China (No. 2 0 0 1AA2 330 11) +1 种基金and theNational Frontier Research Program (No.G19990 75 6 0 2 G19990 1190 2 and19980 5 110 5 )
文摘The cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C and/or glutaryl 7 aminocephalosporanic acid to produce 7 aminocephalosporanic acid. The cephalosporin acylase from Pseudomonas sp. strain 130 was crystallized in two different forms suitable for structural studies. A tetragonal crystal form diffracted to 0.24 nm belonged to the space group P4 12 12. There was one αβ heterodimer per asymmetric unit. A second crystal form diffracted to 0.21 nm belonged to the space group P2 1. There was four αβ heterodimers per asymmetric unit. The tetragonal crystal structure of CA 130 was determined using the multiwavelength anomalous diffraction method and the P2 1 crystal structure was then determined using the molecular replacement method.