In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by ...In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L 〉 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.展开更多
Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporall...Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporally correlated noise. The growth equations studied include the Kardar-Parisi-Zhang (KPZ), Sun-Guo-Grant (SGG), and Lai-Das Sarma-Villain (LDV) equations. The anomalous scaling exponents in both the weak- and strong-coupling regions are obtained, respectively.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10674177)the Youth Foundation of China University of Mining & Technology (Grant No. 2008A035)
文摘In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L 〉 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.
基金National Natural Science Foundation of China under Grant No.10674177
文摘Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporally correlated noise. The growth equations studied include the Kardar-Parisi-Zhang (KPZ), Sun-Guo-Grant (SGG), and Lai-Das Sarma-Villain (LDV) equations. The anomalous scaling exponents in both the weak- and strong-coupling regions are obtained, respectively.