Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties.Here we report the systematic magneto-transport studies on the Heusler alloy Nb_(x)Zr_(1-x)Co...Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties.Here we report the systematic magneto-transport studies on the Heusler alloy Nb_(x)Zr_(1-x)Co_(2)Sn considered as a ferromagnetic(FM)Weyl semimetal.The cusp anomaly of temperature-dependent resistivity and large isotropic negative magneto-resistivity(MR)emerge around the FM transition consistent with the theoretical half-metallic predictions.The prominent anomalous Hall effect(AHE)has the same behavior with the applied field along various crystal directions.The Nb doping introduces more disorder resulting in the enhancement of the upturn for the temperature-dependent resistivity in low temperatures.With Nb doping,the AHE exhibits systemic evolution with the Fermi level lifted.At the doping level of x=0.25,the AHE mainly originates from the intrinsic contribution related to non-trivial topological Weyl states.展开更多
We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous...We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.展开更多
The quantum anomalous Hall(QAH) effect has attracted enormous attention since it can induce topologically protected conducting edge states in an intrinsic insulating material. For practical quantum applications, the m...The quantum anomalous Hall(QAH) effect has attracted enormous attention since it can induce topologically protected conducting edge states in an intrinsic insulating material. For practical quantum applications, the main obstacle is the non-existent room temperature QAH systems, especially with both large topological band gap and robust ferromagnetic order. Here, according to first-principles calculations, we predict the realization of the room temperature QAH effect in a two-dimensional(2D) honeycomb lattice, RuCS_(3) with a non-zero Chern number of C = 1. Especially, the nontrivial topology band gap reaches up to 336 me V for RuCS_(3). Moreover, we find that RuCS_(3) has a large magnetic anisotropy energy(2.065 me V) and high Curie temperature(696 K). We further find that the non-trivial topological properties are robust against the biaxial strain. The robust topological and magnetic properties make RuCS_(3) have great applications in room temperature spintronics and nanoelectronics.展开更多
The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and th...We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and the intermediate-valence Yb atoms are nonmagnetic.The intrinsic mechanism plays a crucial role in the AHE,leading to an enhanced anomalous Hall conductivity(AHC)compared with the other rare-earth RMn_(6)Sn_(6)compounds.Our band structure calculation reveals a strong hybridization between the 4f electrons of Yb and conduction electrons.展开更多
Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH ins...Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures.展开更多
We discuss the anomalous magnetic moment of muon in the minimal supersymmetric model with and without right-handed neutrinos. In the same framework, the decay width of is also evaluated. Considering the measured val...We discuss the anomalous magnetic moment of muon in the minimal supersymmetric model with and without right-handed neutrinos. In the same framework, the decay width of is also evaluated. Considering the measured value of muon in the E821 experiment and other experimental constraints on the lepton-flavor-violation processes, we carry out numerical analysis on the concerned observables in the minimal supergravity scenario.展开更多
This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films....This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room tempera- ture. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.展开更多
DC-magnetron sputtering was employed to prepare Fe-N/Ti-N periodic nano-multilayers . Magnetic properties were studied by vibrating sample magnetometry and structure by TEM and X-ray diffraction for the films. A stron...DC-magnetron sputtering was employed to prepare Fe-N/Ti-N periodic nano-multilayers . Magnetic properties were studied by vibrating sample magnetometry and structure by TEM and X-ray diffraction for the films. A strong enhancement of the saturation magnetization was found in multilayers containing thinner Fe-N layers. The coercivity was found to be nearly constant. A kind of anomalous hysteresis loops was found in some展开更多
The aim of this work is to prove the AMF (anomalous magnetic fields) from the environment cause of AID (autoimmune diseases). The therapeutic possibilities of natural EMF (Earth's magnetic field) is pointed out...The aim of this work is to prove the AMF (anomalous magnetic fields) from the environment cause of AID (autoimmune diseases). The therapeutic possibilities of natural EMF (Earth's magnetic field) is pointed out and how to act to prevent AID is determined. Authors indicate in which magnetic fields the IS (immune system) defends the body. They also explain why, in medical literature, risk factors are mistakenly declared pathogens of AID. The magnetic fields intensity in 20 peoples' beds, suffering from Type 1 diabetes, was measured with proton magnetometer (accuracy of 100 nT). The measurement results are presented on sketches, patients were transferred to the natural EMF, medical condition was monitored, and AID function IS ethiopathology was studied. The correlation between AMF and organ location where AID occurred was determined by measuring. The cells of an organism, formed in natural EMF, are in magnetic balance. When an intruder enters the body, magnetic balance disappears and leukocytes with its MF (magnetic forces) destroy intruders. In the AMF, cells get enlarged MF without magnetic balance, causing IS with its MF to attack own cells, resulting AID. When an intruder enters a tissue, tissue cells and cells of intruders gain enhanced MF. IS with its MF destroys intruders. In the literature (The China Study by T. Colin Campbell), the food is presented as cause of number of diseases. It was found what led to such a misinterpretation. It has been proven that causes of mentioned diseases are only AMF, which can be located in any organ, and with Type 1 diabetes its spread to the whole body with strongest intensity on pancreas. AMF give tissue cells reinforced MF without magnetic balance causing IS to deplete own tissues, resulting AID. IS works perfectly without AMF and risk factors are only a consequence of AMF.展开更多
After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is ...After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r<sup>3</sup>. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.展开更多
We fabricate SrRuO_(3)/PbZr_(0.52)Ti_(0.48)O_(3)heterostructures each with an in-plane tensile-strained SrRuO_(3)layer and investigate the effect of an applied electric field on anomalous Hall effect.The four-fold sym...We fabricate SrRuO_(3)/PbZr_(0.52)Ti_(0.48)O_(3)heterostructures each with an in-plane tensile-strained SrRuO_(3)layer and investigate the effect of an applied electric field on anomalous Hall effect.The four-fold symmetry of anisotropic magnetoresistance and the nonmonotonic variation of anomalous Hall resistivity are observed.By applying positive electric field or negative electric field,the intersecting hump-like feature is suppressed or enhanced,respectively.The sign and magnitude of the anomalous Hall conductivity can be effectively controlled with an electric field under a high magnetic field.The electric-field-modulated anomalous Hall effect is associated with the magnetization rotation in SrRuO_(3).The experimental results are helpful in modulating the magnetization rotation in spintronic devices based on SrRuO_(3)heterostructures.展开更多
Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The ma...Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications.展开更多
Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostruct...Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect.展开更多
Two-dimensional(2D)semiconductors with intrinsic ferromagnetism are highly desirable for potential applications in nextgeneration spintronic and optoelectronic devices.However,controllable synthesis of intrinsic 2D ma...Two-dimensional(2D)semiconductors with intrinsic ferromagnetism are highly desirable for potential applications in nextgeneration spintronic and optoelectronic devices.However,controllable synthesis of intrinsic 2D magnetic semiconductor on a substrate is still a challenging task.Herein,large-area 2D non-layered rock salt(α-phase)MnSe nanosheets were grown on mica substrates,with the thickness changing from 54.2 to 0.9 nm(one unit cell),by chemical vapour deposition.The X-ray diffraction,Raman spectroscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy measurements confirmed that the resulting 2Dα-MnSe nanosheets were obtained as high-quality single crystals.The magnetic hysteresis loops and synchrotron X-ray measurements directly indicated the anomalous magnetic properties inα-MnSe nanosheets.Comprehensive analysis of the reasons for magnetic property revealed that the low-temperature phase transition,small number of stacking differences in crystals,and surface weak oxidation in(111)-orientedα-MnSe were the main mechanisms.Furthermore,α-MnSe nanosheets exhibited broadband photoresponse from 457 to 671 nm with an outstanding detectivity and responsivity behaviours.This study presents the detailed growth process of ultrathin 2D magnetic semiconductorα-MnSe,and its outstanding magnetic properties and broadband photodetection,which provide an excellent platform for magneto-optical and magneto-optoelectronic research.展开更多
Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphe...Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphene/CoBr_(2)(Gr/CoBr_(2))heterostructures and find that an enhancement of in-plane magnetic anisotropy(IMA)energy in monolayer CoBr_(2) can be accomplished by reducing the interlayer distance of the vdW heterostructures.In addition,we clarify that the enhancement of IMA energy primarily results from two factors:one is the weakness of the Co-d_(xy) and Co-d_(x^(2)-y^(2)) orbital hybridization and the other is the augmentation of the Co-d_(yz) and Co-d_(z)2 orbital hybridization.Meanwhile,calculation results suggest that the Kosterlitz–Thouless phase transition temperature(TKT)of a 2D XY magnet Gr/CoBr_(2)(23.8 K)is higher than that of a 2D XY monolayer CoBr_(2)(1.35 K).By decreasing the interlayer distances,the proximity effect is more pronounced and band splitting appears.Moreover,by taking into account spin–orbit coupling,a band gap of approximately 14.3 meV and the quantum anomalous Hall effect(QAHE)are attained by decreasing the interlayer distance by 1.0 A.Inspired by the above conclusions,we design a topological field transistor device model.Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials,providing a pathway for the development of new low-power spintronic devices.展开更多
The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent y...The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFF0718400 and 2023YFA1406500)the National Natural Science Foundation of China (Grant Nos.U2130101 and 92165204)+2 种基金the Natural Science Foundation of Guangdong Province,China (Grant No.2022A1515010035)the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No.2022B1212010008)the Open Project of Key Laboratory of Optoelectronic Materials and Technologies (Grant No.OEMT-2023-ZTS-01)。
文摘Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties.Here we report the systematic magneto-transport studies on the Heusler alloy Nb_(x)Zr_(1-x)Co_(2)Sn considered as a ferromagnetic(FM)Weyl semimetal.The cusp anomaly of temperature-dependent resistivity and large isotropic negative magneto-resistivity(MR)emerge around the FM transition consistent with the theoretical half-metallic predictions.The prominent anomalous Hall effect(AHE)has the same behavior with the applied field along various crystal directions.The Nb doping introduces more disorder resulting in the enhancement of the upturn for the temperature-dependent resistivity in low temperatures.With Nb doping,the AHE exhibits systemic evolution with the Fermi level lifted.At the doping level of x=0.25,the AHE mainly originates from the intrinsic contribution related to non-trivial topological Weyl states.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1502502)the National Natural Science Foundation of China(Grant Nos.12141002 and 12225401)+6 种基金the Fund from Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratorysupported by the Interdisciplinary Program of Wuhan National High Magnetic Field Center(Grant No.WHMFC202123)Huazhong University of Science and Technologysupported by the National Natural Science Foundation of China(Grant Nos.12074041 and 11674030)the Foundation of the National Key Laboratory of Shock Wave and Detonation Physics(Grant No.6142A03191005)the National Key Research and Development Program of China(Grant No.2016YFA0302300)the startup funding of Beijing Normal University。
文摘We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.
基金the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA041)the Taishan Scholar Project of Shandong Province, China (Grant No. ts20190939)+1 种基金the National Natural Science Foundation of China (Grant No. 62071200)the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020QA052)。
文摘The quantum anomalous Hall(QAH) effect has attracted enormous attention since it can induce topologically protected conducting edge states in an intrinsic insulating material. For practical quantum applications, the main obstacle is the non-existent room temperature QAH systems, especially with both large topological band gap and robust ferromagnetic order. Here, according to first-principles calculations, we predict the realization of the room temperature QAH effect in a two-dimensional(2D) honeycomb lattice, RuCS_(3) with a non-zero Chern number of C = 1. Especially, the nontrivial topology band gap reaches up to 336 me V for RuCS_(3). Moreover, we find that RuCS_(3) has a large magnetic anisotropy energy(2.065 me V) and high Curie temperature(696 K). We further find that the non-trivial topological properties are robust against the biaxial strain. The robust topological and magnetic properties make RuCS_(3) have great applications in room temperature spintronics and nanoelectronics.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12141002,12225401,and 12274154)the National Key Research and Development Program of China(Grant No.2021YFA1401902)+1 种基金the CAS Interdisciplinary Innovation Teamthe Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and the intermediate-valence Yb atoms are nonmagnetic.The intrinsic mechanism plays a crucial role in the AHE,leading to an enhanced anomalous Hall conductivity(AHC)compared with the other rare-earth RMn_(6)Sn_(6)compounds.Our band structure calculation reveals a strong hybridization between the 4f electrons of Yb and conduction electrons.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52173283)the Taishan Scholar Program of Shandong Province,China (Grant No. ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)。
文摘Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures.
文摘We discuss the anomalous magnetic moment of muon in the minimal supersymmetric model with and without right-handed neutrinos. In the same framework, the decay width of is also evaluated. Considering the measured value of muon in the E821 experiment and other experimental constraints on the lepton-flavor-violation processes, we carry out numerical analysis on the concerned observables in the minimal supergravity scenario.
基金supported by the National Natural Science Foundation of China (Grant No. 50772122)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51002176)
文摘This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room tempera- ture. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.
文摘DC-magnetron sputtering was employed to prepare Fe-N/Ti-N periodic nano-multilayers . Magnetic properties were studied by vibrating sample magnetometry and structure by TEM and X-ray diffraction for the films. A strong enhancement of the saturation magnetization was found in multilayers containing thinner Fe-N layers. The coercivity was found to be nearly constant. A kind of anomalous hysteresis loops was found in some
文摘The aim of this work is to prove the AMF (anomalous magnetic fields) from the environment cause of AID (autoimmune diseases). The therapeutic possibilities of natural EMF (Earth's magnetic field) is pointed out and how to act to prevent AID is determined. Authors indicate in which magnetic fields the IS (immune system) defends the body. They also explain why, in medical literature, risk factors are mistakenly declared pathogens of AID. The magnetic fields intensity in 20 peoples' beds, suffering from Type 1 diabetes, was measured with proton magnetometer (accuracy of 100 nT). The measurement results are presented on sketches, patients were transferred to the natural EMF, medical condition was monitored, and AID function IS ethiopathology was studied. The correlation between AMF and organ location where AID occurred was determined by measuring. The cells of an organism, formed in natural EMF, are in magnetic balance. When an intruder enters the body, magnetic balance disappears and leukocytes with its MF (magnetic forces) destroy intruders. In the AMF, cells get enlarged MF without magnetic balance, causing IS with its MF to attack own cells, resulting AID. When an intruder enters a tissue, tissue cells and cells of intruders gain enhanced MF. IS with its MF destroys intruders. In the literature (The China Study by T. Colin Campbell), the food is presented as cause of number of diseases. It was found what led to such a misinterpretation. It has been proven that causes of mentioned diseases are only AMF, which can be located in any organ, and with Type 1 diabetes its spread to the whole body with strongest intensity on pancreas. AMF give tissue cells reinforced MF without magnetic balance causing IS to deplete own tissues, resulting AID. IS works perfectly without AMF and risk factors are only a consequence of AMF.
文摘After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r<sup>3</sup>. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974099)the Intelligence Introduction Plan of Henan Province,China in 2021(Grant No.CXJD2021008)+1 种基金the Plan for Leading Talent of Fundamental Research of the Central China in 2020the Key Scientific Research Project of Colleges and Universities in Henan Province,China(Grant No.21A140005)。
文摘We fabricate SrRuO_(3)/PbZr_(0.52)Ti_(0.48)O_(3)heterostructures each with an in-plane tensile-strained SrRuO_(3)layer and investigate the effect of an applied electric field on anomalous Hall effect.The four-fold symmetry of anisotropic magnetoresistance and the nonmonotonic variation of anomalous Hall resistivity are observed.By applying positive electric field or negative electric field,the intersecting hump-like feature is suppressed or enhanced,respectively.The sign and magnitude of the anomalous Hall conductivity can be effectively controlled with an electric field under a high magnetic field.The electric-field-modulated anomalous Hall effect is associated with the magnetization rotation in SrRuO_(3).The experimental results are helpful in modulating the magnetization rotation in spintronic devices based on SrRuO_(3)heterostructures.
基金the Tencent Foundation through the XPLORER PRIZEthe National Key Research and Development Program of China(Grant Nos.2018YFB0407602 and 2021YFB3601303)the National Natural Science Foundation of China(Grant Nos.61627813,11904017,92164206,and 61571023)。
文摘Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications.
基金funding support from the Singapore MOE Ac RF 308 Tier 2(Grant No.T2EP50220-0026)funding support from Shandong Provincial Natural Science Foundation(Grant No.ZR2023QA012)+3 种基金the Special Fund-ing in the Project of Qilu Young Scholar Program of Shandong Universityfunding support from Australian Research Council Future Fellowship(Grant No.FT220100290)funding support from the AINSE postgraduate awardfunding support from the Research and Development Administration Office at the University of Macao(Grants Nos.MYRG2022-00088-IAPME and SRG2021-00003-IAPME)。
文摘Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect.
基金supported by the National Natural Science Foundation of China(Nos.12174237,52002232,and 12304148)Fundamental Research Program of Shanxi Province(202303021221152).
文摘Two-dimensional(2D)semiconductors with intrinsic ferromagnetism are highly desirable for potential applications in nextgeneration spintronic and optoelectronic devices.However,controllable synthesis of intrinsic 2D magnetic semiconductor on a substrate is still a challenging task.Herein,large-area 2D non-layered rock salt(α-phase)MnSe nanosheets were grown on mica substrates,with the thickness changing from 54.2 to 0.9 nm(one unit cell),by chemical vapour deposition.The X-ray diffraction,Raman spectroscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy measurements confirmed that the resulting 2Dα-MnSe nanosheets were obtained as high-quality single crystals.The magnetic hysteresis loops and synchrotron X-ray measurements directly indicated the anomalous magnetic properties inα-MnSe nanosheets.Comprehensive analysis of the reasons for magnetic property revealed that the low-temperature phase transition,small number of stacking differences in crystals,and surface weak oxidation in(111)-orientedα-MnSe were the main mechanisms.Furthermore,α-MnSe nanosheets exhibited broadband photoresponse from 457 to 671 nm with an outstanding detectivity and responsivity behaviours.This study presents the detailed growth process of ultrathin 2D magnetic semiconductorα-MnSe,and its outstanding magnetic properties and broadband photodetection,which provide an excellent platform for magneto-optical and magneto-optoelectronic research.
基金Project supported by the National Natural Science Foundation of China(Grant No.52173283)Taishan Scholar Program of Shandong Province(Grant No.ts20190939)Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043).
文摘Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphene/CoBr_(2)(Gr/CoBr_(2))heterostructures and find that an enhancement of in-plane magnetic anisotropy(IMA)energy in monolayer CoBr_(2) can be accomplished by reducing the interlayer distance of the vdW heterostructures.In addition,we clarify that the enhancement of IMA energy primarily results from two factors:one is the weakness of the Co-d_(xy) and Co-d_(x^(2)-y^(2)) orbital hybridization and the other is the augmentation of the Co-d_(yz) and Co-d_(z)2 orbital hybridization.Meanwhile,calculation results suggest that the Kosterlitz–Thouless phase transition temperature(TKT)of a 2D XY magnet Gr/CoBr_(2)(23.8 K)is higher than that of a 2D XY monolayer CoBr_(2)(1.35 K).By decreasing the interlayer distances,the proximity effect is more pronounced and band splitting appears.Moreover,by taking into account spin–orbit coupling,a band gap of approximately 14.3 meV and the quantum anomalous Hall effect(QAHE)are attained by decreasing the interlayer distance by 1.0 A.Inspired by the above conclusions,we design a topological field transistor device model.Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials,providing a pathway for the development of new low-power spintronic devices.
基金supported by Shanghai Natural Science Foundation(No.14ZR1403000)1000 Young Talents Program of China+2 种基金the National Natural Science Foundation of China(No.11535012)supported by China Postdoctoral Science Foundation under Grant No.2016M590312support from RIKEN-BNL Research Center
文摘The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.