The resistivities of vanadium-doped semi-insulating 4H-SiC wafers were measured by a contactless resistivity measurement system. Anomalous resistivity was found in semi-insulating 4H-SiC wafer. Raman spectra of semi-i...The resistivities of vanadium-doped semi-insulating 4H-SiC wafers were measured by a contactless resistivity measurement system. Anomalous resistivity was found in semi-insulating 4H-SiC wafer. Raman spectra of semi-insulating4H-SiC wafer indicated that the anomalous resistivity was caused by polytype inclusion. Based on the activation energies of different SiC polytypes calculated from resistivity versus temperature data measured by COREMA-VT, the resistivities in the vanadium-doped semi-insulating 4H-SiC wafer with 6H polytype inclusion were calculated. The calculated resistivities are quite consistent with the measured resistivities. Furthermore, the compensation mechanism for the formation of anomalous resistivity was proposed.展开更多
The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resista...The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).展开更多
基金financially supported by National Basic Research Program of China (No. 2011CB301904)the Natural Science Foundation of China (Nos. 11134006 and 61327808)
文摘The resistivities of vanadium-doped semi-insulating 4H-SiC wafers were measured by a contactless resistivity measurement system. Anomalous resistivity was found in semi-insulating 4H-SiC wafer. Raman spectra of semi-insulating4H-SiC wafer indicated that the anomalous resistivity was caused by polytype inclusion. Based on the activation energies of different SiC polytypes calculated from resistivity versus temperature data measured by COREMA-VT, the resistivities in the vanadium-doped semi-insulating 4H-SiC wafer with 6H polytype inclusion were calculated. The calculated resistivities are quite consistent with the measured resistivities. Furthermore, the compensation mechanism for the formation of anomalous resistivity was proposed.
文摘The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).