Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over ...Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.展开更多
In this paper the impacts of the anomalous SST in the warm pool area of the Western Equatorial Pacific on the winter time circulation and the East Asian monsoon are studied by using the NCAR CCM. It is found that the ...In this paper the impacts of the anomalous SST in the warm pool area of the Western Equatorial Pacific on the winter time circulation and the East Asian monsoon are studied by using the NCAR CCM. It is found that the abnormal heating in the warm pool area will change the strength and the position of the Walker Cell in the Equatorial Pacific and the anti-Walker Cell in the equatorial Indian Ocean. Both the Walker and anti-Walker Cells are strengthened. The local Hadley Cells over two hemispheres near the warm pool are also strengthened. The subtropical highs in two hemispheres become stronger and move poleward slightly. The westerly jets in the extratropical regions have similar changes as the subtropical highs. The winter monsoon in South-East Asia is weakened by the abnormal heating in the warm pool. The experiment also show that there are wave trains emanating from surrounding areas of the warm pool to the high latitudes, causing various changes in circulations and local weather.展开更多
This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average r...This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi.展开更多
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and th...The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.展开更多
Interannual variation in summer rainfall over South China (SC) was investigated on the monthly timescale.It was found that monthly rainfall from May to August exhibits different features of variation,and the amounts...Interannual variation in summer rainfall over South China (SC) was investigated on the monthly timescale.It was found that monthly rainfall from May to August exhibits different features of variation,and the amounts are basically independent of each other.There is a significant negative correlation,however,between May and July SC rainfall,which is partially related to the developing phases of ENSO events.It was also found that stronger (weaker) lower-tropospheric winds over SC and the upstream parts are responsible for more (less) SC rainfall in every month from May to August.Despite this monthly consistent enhancement of horizontal winds,the wind anomalies exhibit distinct differences between May-June and July-August,due to the remarkable change in climatological winds between these two periods.More SC rainfall is associated with a lower-tropospheric anticyclonic anomaly over the SCS and the Philippine Sea in May and June,but with a cyclonic anomaly centered over SC in July and August.展开更多
This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA) and its associated circulation anomalies.Two leading modes for the temperature variability over NEA are ob...This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA) and its associated circulation anomalies.Two leading modes for the temperature variability over NEA are obtained by EOF analysis.The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode.This anomaly extends from southeast of Lake Baikal to Japan,with a central area in Northeast China.The second EOF mode is characterized by a seesaw pattern,showing a contrasting distribution between East Asia(specifically including the Changbai Mountains in Northeast China,Korea,and Japan) and north of this region.This mode is named the East Asia(EA) mode.Both modes contribute equivalently to the temperature variability in EA.The two leading modes are associated with different circulation anomalies.A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet.On the other hand,a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet.In addition,the NEA mode tends to be related to the Eurasian teleconnection pattern,while the EA mode is associated with the East Asia-Pacific/PacificJapan pattern.展开更多
This study investigated the contributions of mid–high-latitude circulation anomalies to the extremely hot summer(July and August;JA)of 2018 over Northeast Asia(NEA).The JA-mean surface air temperature in 2018 was 1.2...This study investigated the contributions of mid–high-latitude circulation anomalies to the extremely hot summer(July and August;JA)of 2018 over Northeast Asia(NEA).The JA-mean surface air temperature in 2018 was 1.2°C higher than that of the 1979–2018 climatology,with the amplitude of such an anomaly almost doubling the interannual standard deviation,making 2018 the hottest year during the analysis period 1979–2018.The abnormal warming over NEA was caused by a local positive geopotential height anomaly reaching strongest intensity in JA 2018.Further investigation suggested that the upper-tropospheric circulation anomalies over northern Europe and the Caspian Sea were crucial to forming this NEA circulation anomaly through initiating downstream wave trains.Particularly,the geopotential heights over these two regions were concurrently at their highest in JA 2018,and therefore jointly contributed to the profound circulation anomaly over NEA and the hottest summer on record.Due to these two teleconnection patterns,the temperature anomalies in NEA are closely related to those in both northern Europe and the Caspian Sea,where the similarly extreme warming also happened in 2018.展开更多
In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with th...In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.展开更多
The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data...The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon.展开更多
Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the...Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.展开更多
In this paper, we discussed the features of atmospheric circulations over Eurasia as a response to sea surface temperature anomalies (SSTAs) over the tropical Indian Ocean, the equatorial Pacific, Kuroshio and the N...In this paper, we discussed the features of atmospheric circulations over Eurasia as a response to sea surface temperature anomalies (SSTAs) over the tropical Indian Ocean, the equatorial Pacific, Kuroshio and the North Atlantic. Our results are shown as follows: (1) CAM3.0, driven by the combined SSTAs over the four oceanic regions, can simulate well the features of anomalous atmospheric circulations over Eurasia in January 2008, indicating that the effects of the SSTAs over these four regions were one of the key causes of the anomalous systems over Eurasia. (2) The SSTAs over each key region contributed to the intensification of blocking over the Urals Mountains and a main East Asian trough. However, the influence of the SSTAs over individual oceanic regions differed from one another in other aspects. The SSTAs over the North Atlantic had an impact on the 500-hPa anomalous height (Z500A) over the middle-high latitudes and had a somewhat smaller effect over the low latitudes. For the warm SSTAs over Kuroshio, the subtropical high was much stronger, spread farther north than usual, and had an anomalous easterly that dominated the northwest Pacific Ocean. The warm SSTAs over the tropical Indian Ocean could have caused a negative Z500A from West Asia to Middle Asia, a remarkably anomalous southwesterly from the Indian Ocean to the south of China and an anomalous anticyclone circulation over the South China Sea-Philippine Sea region. Because of the La Nifia event, the winter monsoon was stronger than normal, with an anomalously cooler northerly over the southeastern coastal areas of China. (3) The combined effects of the SSTAs over the four key regions were likely more important to the atmospheric circulation anomalies of January 2008 over Eurasia than the effects of individual or partly combined SSTAS. This unique SSTA distribution possibly led to the circulation anomalies over Eurasia in January 2008, especially the atmospheric circulation anomalies over the subtropics, which were more similar to those of the winter E1 Nifio events than to the circulation anomalies following La Nifia.展开更多
By using data of serially numbered typhoons in northwestem Pacific and NOAA OLR data and NCEP/NCAR reanalysis data of wind field, based on the statistics and study of the relationship between the calendar years with m...By using data of serially numbered typhoons in northwestem Pacific and NOAA OLR data and NCEP/NCAR reanalysis data of wind field, based on the statistics and study of the relationship between the calendar years with more (or fewer) summer typhoons and ENSO events, we compared the composites of OLR eigenvectors and tropical summer wind fields during E1 Nino and La Nino events with more or fewer than normal summer typhoons, respectively. The results show that, in summer, without remarkable systematic anomalies of Mascarene High and Australia High in South Hemisphere, the anomaly of Walker circulation will dominate and follow the rule of ENSO impacts to atmospheric circulation and typhoon frequency. Otherwise, when systematic anomalies of Australia High appear during the El Nino events, circulation anomalies in the South Hemisphere will dominate, and many more typhoons will occur. In 1999, which is a special year of La Nina events, northward and eastward monsoon was induced by the stronger Mascarene High, and fewer typhoons arose. The typhoon source are regions where weak vertical wind shear, warm pool in westem Pacific and the area with monsoon troughs are overlapping with each other. Finally, this paper analyzes and compares the source locations and ranges of more (fewer) typhoons in the events of El Nino and La Nino, respectively.展开更多
Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode ...Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode and the 7-10-year mode. Results clearly indicate that corresponding to the positive and negative phases of the interdecadal modes of SST anomaly (SSTA) in the North Pacific, the anomalous patterns of the atmospheric circulation and climate are approximately out of phase, fully illustrating the important role of the interdecadal modes of SST. Since the two interdecadal modes of SSTA in the North Pacific have similar horizontal structures, their impacts on the atmospheric circulation and climate are also analogous. The impact of the interdecadal modes of the North Pacific SST on the atmospheric circulation is barotropic at middle latitudes and baroclinic in tropical regions.展开更多
A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but ...A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1-2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25°N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.展开更多
The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributi...The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated with an idealized distribution of the SST anomalies in the tropical western Pacific.The simulated results show that the negative anomalies of SST in the tropical western Pacific have a significant effect on the formation and maintenance of the blocking high over the northeastern Asia.展开更多
This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in sit...This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of "Northern wetting and Southern drying", similar to the anti-phase of the climate pattern prevailing during 1980--2000 in China's Mainland; southwestern China incurred a severe drought during 2009-20l 3. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further.展开更多
Limitations of difference maps showing circulation anomalies are analyzed, and the definition of the local pattern analogue coefficient (LPAC) is given together with the procedure for constructing such a map, followed...Limitations of difference maps showing circulation anomalies are analyzed, and the definition of the local pattern analogue coefficient (LPAC) is given together with the procedure for constructing such a map, followed by an example illustrating its useful application in circulation anomaly.展开更多
As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-197...As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-1970s to the present. The decadal change of "tropical cyclones activities are closely related to the decadal changes of atmospheric general circulation in the troposphere, which provide favorable or unfavorable conditions for the formation of tropical cyclone. Furthermore, based on the simulation of corresponding atmospheric general circulation from a coupled climate model under the schemes of Intergovemmental Panel on Climate Change (IPCC),special report on emission scenarios (SRES) A2 and B2 emissions scenarios an outlook on the tropical cyclone frequency generated over the western North Pacific in the coming half century is presented. It is indicated that in response to the global climate change the general circulation of atmosphere would become unfavorable for the formation of tropical cyclone as a whole and the frequency of tropical cyclones formation would likely decrease by 5% within the next half century, although more tropical cyclones would appear during a short period in it.展开更多
Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western P...Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in the northwestern Pacific and their evolution. The results show that the extreme winter circulation anomaly in the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of the Northern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeastern Pacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east direction is also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic) circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asian summer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is the evolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anomalies originating from the tropical western Pacific gradually move towards, and finally occupy the Asian continent, and further influence the thermal depression over the Asian continent in the following summer.展开更多
A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East ...A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East Asia in sum- mer,The model is described briefly in the text and the results are analysed in somewhat detail.Results show that the sur- face albedo,the drag coefficient,the evaporation rate and the ground temperature all have large influences on the circula- tion near the Plateau and in East Asia.When the heating at the surface increases,the Tibetan high in the upper troposphere intensifies,too.Its area enlarges and its axis tilts to northwest.The upper tropical easterly increase and shifts to north.The southwesterly in the lower troposphere,in consistence,also increases.The cross-equatorial low-lev- el currents along Somali and South India are influenced to increase their speeds while those over North Australia de- crease.The land low over the Asian Continent deepens.Meanwhile the upward motions over the land of east China and over the Indo-China Peninsula intensify and therefore the precipitation over those areas increases.However,along the coastal area of China the upward motions and therefore the precipitation decrease. Atmospheric heat source anomaly has large influence on the circulation,too.Simulated results indicate that heat source anomaly in the lower atmosphere over the Plateau influences the intensity and the position of the monsoon circu- lation while that in the upper atmosphere only affects the intensity.The heating status over the Plateau has slight influ- ence on the westerly jet,north of the Plateau,while it has strong effect on the subtropical jet at the mid and low latitudes.展开更多
基金supported by the Ministry of Science and Technology of China (National Basic Research Program of China Grant No. 2012CB955602)the National Natural Science Foundation of China (Grant Nos. 41176006 and 41221063)
文摘Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.
文摘In this paper the impacts of the anomalous SST in the warm pool area of the Western Equatorial Pacific on the winter time circulation and the East Asian monsoon are studied by using the NCAR CCM. It is found that the abnormal heating in the warm pool area will change the strength and the position of the Walker Cell in the Equatorial Pacific and the anti-Walker Cell in the equatorial Indian Ocean. Both the Walker and anti-Walker Cells are strengthened. The local Hadley Cells over two hemispheres near the warm pool are also strengthened. The subtropical highs in two hemispheres become stronger and move poleward slightly. The westerly jets in the extratropical regions have similar changes as the subtropical highs. The winter monsoon in South-East Asia is weakened by the abnormal heating in the warm pool. The experiment also show that there are wave trains emanating from surrounding areas of the warm pool to the high latitudes, causing various changes in circulations and local weather.
基金supported by the National Natural Science Foundation of China (41575091)China Meteorological Administration Training Centre scientific research project (Study on impacting factors of regional climate in China)+1 种基金Shanxi Provincial Meteorological Bureau project (SXKMSQH20236329)Heze University Research Fund Program (Poverty Alleviation Project) (XY18FP08)
文摘This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi.
文摘The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.
基金supported by the National Natural Science Foundation of China (Grant No. U0933603)
文摘Interannual variation in summer rainfall over South China (SC) was investigated on the monthly timescale.It was found that monthly rainfall from May to August exhibits different features of variation,and the amounts are basically independent of each other.There is a significant negative correlation,however,between May and July SC rainfall,which is partially related to the developing phases of ENSO events.It was also found that stronger (weaker) lower-tropospheric winds over SC and the upstream parts are responsible for more (less) SC rainfall in every month from May to August.Despite this monthly consistent enhancement of horizontal winds,the wind anomalies exhibit distinct differences between May-June and July-August,due to the remarkable change in climatological winds between these two periods.More SC rainfall is associated with a lower-tropospheric anticyclonic anomaly over the SCS and the Philippine Sea in May and June,but with a cyclonic anomaly centered over SC in July and August.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41105046 and 41320104007)
文摘This study investigates the interannual variation of summer surface air temperature over Northeast Asia(NEA) and its associated circulation anomalies.Two leading modes for the temperature variability over NEA are obtained by EOF analysis.The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode.This anomaly extends from southeast of Lake Baikal to Japan,with a central area in Northeast China.The second EOF mode is characterized by a seesaw pattern,showing a contrasting distribution between East Asia(specifically including the Changbai Mountains in Northeast China,Korea,and Japan) and north of this region.This mode is named the East Asia(EA) mode.Both modes contribute equivalently to the temperature variability in EA.The two leading modes are associated with different circulation anomalies.A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet.On the other hand,a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet.In addition,the NEA mode tends to be related to the Eurasian teleconnection pattern,while the EA mode is associated with the East Asia-Pacific/PacificJapan pattern.
基金supported by the National Natural Science Foundation of China [grant numbers41605027,41805064,91537103,and 41876020]
文摘This study investigated the contributions of mid–high-latitude circulation anomalies to the extremely hot summer(July and August;JA)of 2018 over Northeast Asia(NEA).The JA-mean surface air temperature in 2018 was 1.2°C higher than that of the 1979–2018 climatology,with the amplitude of such an anomaly almost doubling the interannual standard deviation,making 2018 the hottest year during the analysis period 1979–2018.The abnormal warming over NEA was caused by a local positive geopotential height anomaly reaching strongest intensity in JA 2018.Further investigation suggested that the upper-tropospheric circulation anomalies over northern Europe and the Caspian Sea were crucial to forming this NEA circulation anomaly through initiating downstream wave trains.Particularly,the geopotential heights over these two regions were concurrently at their highest in JA 2018,and therefore jointly contributed to the profound circulation anomaly over NEA and the hottest summer on record.Due to these two teleconnection patterns,the temperature anomalies in NEA are closely related to those in both northern Europe and the Caspian Sea,where the similarly extreme warming also happened in 2018.
基金supported by the National Natural Science Foundation of China under Grant 41775073
文摘In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW- Q11-04)the National Basic Research Program of China (Grant No. 2010CB950402)the National Natural Science Foundation of China (Grant No. 40975052)
文摘The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon.
基金The key technology R&D program of China, No.2007BAC29B02Project of Jiangsu Key Laboratory of Meteorological Disaster, No.KLME060101
文摘Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.
基金Special Funds for Public Welfare of China (GYHY(QX) 2008-06-005)Science and Technology Innovation Program of Jiangsu Province (CX09B_221Z)
文摘In this paper, we discussed the features of atmospheric circulations over Eurasia as a response to sea surface temperature anomalies (SSTAs) over the tropical Indian Ocean, the equatorial Pacific, Kuroshio and the North Atlantic. Our results are shown as follows: (1) CAM3.0, driven by the combined SSTAs over the four oceanic regions, can simulate well the features of anomalous atmospheric circulations over Eurasia in January 2008, indicating that the effects of the SSTAs over these four regions were one of the key causes of the anomalous systems over Eurasia. (2) The SSTAs over each key region contributed to the intensification of blocking over the Urals Mountains and a main East Asian trough. However, the influence of the SSTAs over individual oceanic regions differed from one another in other aspects. The SSTAs over the North Atlantic had an impact on the 500-hPa anomalous height (Z500A) over the middle-high latitudes and had a somewhat smaller effect over the low latitudes. For the warm SSTAs over Kuroshio, the subtropical high was much stronger, spread farther north than usual, and had an anomalous easterly that dominated the northwest Pacific Ocean. The warm SSTAs over the tropical Indian Ocean could have caused a negative Z500A from West Asia to Middle Asia, a remarkably anomalous southwesterly from the Indian Ocean to the south of China and an anomalous anticyclone circulation over the South China Sea-Philippine Sea region. Because of the La Nifia event, the winter monsoon was stronger than normal, with an anomalously cooler northerly over the southeastern coastal areas of China. (3) The combined effects of the SSTAs over the four key regions were likely more important to the atmospheric circulation anomalies of January 2008 over Eurasia than the effects of individual or partly combined SSTAS. This unique SSTA distribution possibly led to the circulation anomalies over Eurasia in January 2008, especially the atmospheric circulation anomalies over the subtropics, which were more similar to those of the winter E1 Nifio events than to the circulation anomalies following La Nifia.
基金Science and Technology Bureau of Xiamen (40275016)
文摘By using data of serially numbered typhoons in northwestem Pacific and NOAA OLR data and NCEP/NCAR reanalysis data of wind field, based on the statistics and study of the relationship between the calendar years with more (or fewer) summer typhoons and ENSO events, we compared the composites of OLR eigenvectors and tropical summer wind fields during E1 Nino and La Nino events with more or fewer than normal summer typhoons, respectively. The results show that, in summer, without remarkable systematic anomalies of Mascarene High and Australia High in South Hemisphere, the anomaly of Walker circulation will dominate and follow the rule of ENSO impacts to atmospheric circulation and typhoon frequency. Otherwise, when systematic anomalies of Australia High appear during the El Nino events, circulation anomalies in the South Hemisphere will dominate, and many more typhoons will occur. In 1999, which is a special year of La Nina events, northward and eastward monsoon was induced by the stronger Mascarene High, and fewer typhoons arose. The typhoon source are regions where weak vertical wind shear, warm pool in westem Pacific and the area with monsoon troughs are overlapping with each other. Finally, this paper analyzes and compares the source locations and ranges of more (fewer) typhoons in the events of El Nino and La Nino, respectively.
基金supported by the National Key Programme for Developing Basic Sciences(G1998040900)the Chinese Academy of Sciences(KZCX2-203).
文摘Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode and the 7-10-year mode. Results clearly indicate that corresponding to the positive and negative phases of the interdecadal modes of SST anomaly (SSTA) in the North Pacific, the anomalous patterns of the atmospheric circulation and climate are approximately out of phase, fully illustrating the important role of the interdecadal modes of SST. Since the two interdecadal modes of SSTA in the North Pacific have similar horizontal structures, their impacts on the atmospheric circulation and climate are also analogous. The impact of the interdecadal modes of the North Pacific SST on the atmospheric circulation is barotropic at middle latitudes and baroclinic in tropical regions.
基金The authors would like to thank Prof.Zhengyu Liu,Mr.Wei Liu and Mr.Wu Shu for giving good suggestions and comments.This work was jointly supported by an open project of LASG,the Natural Science Foundation of China(Grant Nos.40333030 and 40231004)the National Key Programme(G2000078502).
文摘A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1-2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25°N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.
基金This study was supported by the major applied project 'KY85-10' of Chinese Academy of Sciences
文摘The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated with an idealized distribution of the SST anomalies in the tropical western Pacific.The simulated results show that the negative anomalies of SST in the tropical western Pacific have a significant effect on the formation and maintenance of the blocking high over the northeastern Asia.
基金Project supported by the National Basic Research and Development Program of China(Grant No.2013CB430201)the National Natural Science Foundation of China(Grant Nos.41075058 and 41475075)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201106016)
文摘This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of "Northern wetting and Southern drying", similar to the anti-phase of the climate pattern prevailing during 1980--2000 in China's Mainland; southwestern China incurred a severe drought during 2009-20l 3. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further.
基金The work is supported by the Research Funds of Long-Range Weather Prediction,State Meteorological Ad.ministration.China
文摘Limitations of difference maps showing circulation anomalies are analyzed, and the definition of the local pattern analogue coefficient (LPAC) is given together with the procedure for constructing such a map, followed by an example illustrating its useful application in circulation anomaly.
基金This work was supported by the National Natural Science Foundation of China under contract No.40375034the Special Climate Project of China Meteorological Administration.
文摘As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-1970s to the present. The decadal change of "tropical cyclones activities are closely related to the decadal changes of atmospheric general circulation in the troposphere, which provide favorable or unfavorable conditions for the formation of tropical cyclone. Furthermore, based on the simulation of corresponding atmospheric general circulation from a coupled climate model under the schemes of Intergovemmental Panel on Climate Change (IPCC),special report on emission scenarios (SRES) A2 and B2 emissions scenarios an outlook on the tropical cyclone frequency generated over the western North Pacific in the coming half century is presented. It is indicated that in response to the global climate change the general circulation of atmosphere would become unfavorable for the formation of tropical cyclone as a whole and the frequency of tropical cyclones formation would likely decrease by 5% within the next half century, although more tropical cyclones would appear during a short period in it.
文摘Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in the northwestern Pacific and their evolution. The results show that the extreme winter circulation anomaly in the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of the Northern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeastern Pacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east direction is also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic) circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asian summer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is the evolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anomalies originating from the tropical western Pacific gradually move towards, and finally occupy the Asian continent, and further influence the thermal depression over the Asian continent in the following summer.
文摘A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulate the effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East Asia in sum- mer,The model is described briefly in the text and the results are analysed in somewhat detail.Results show that the sur- face albedo,the drag coefficient,the evaporation rate and the ground temperature all have large influences on the circula- tion near the Plateau and in East Asia.When the heating at the surface increases,the Tibetan high in the upper troposphere intensifies,too.Its area enlarges and its axis tilts to northwest.The upper tropical easterly increase and shifts to north.The southwesterly in the lower troposphere,in consistence,also increases.The cross-equatorial low-lev- el currents along Somali and South India are influenced to increase their speeds while those over North Australia de- crease.The land low over the Asian Continent deepens.Meanwhile the upward motions over the land of east China and over the Indo-China Peninsula intensify and therefore the precipitation over those areas increases.However,along the coastal area of China the upward motions and therefore the precipitation decrease. Atmospheric heat source anomaly has large influence on the circulation,too.Simulated results indicate that heat source anomaly in the lower atmosphere over the Plateau influences the intensity and the position of the monsoon circu- lation while that in the upper atmosphere only affects the intensity.The heating status over the Plateau has slight influ- ence on the westerly jet,north of the Plateau,while it has strong effect on the subtropical jet at the mid and low latitudes.