BACKGROUND Delayed post hypoxic leukoencephalopathy syndrome(DPHLS),also known as Grinker’s myelinopathy,is a rare but significant neurological condition that manifests days to weeks after a hypoxic event.Characteriz...BACKGROUND Delayed post hypoxic leukoencephalopathy syndrome(DPHLS),also known as Grinker’s myelinopathy,is a rare but significant neurological condition that manifests days to weeks after a hypoxic event.Characterized by delayed onset of neurological and cognitive deficits,DPHLS presents substantial diagnostic and therapeutic challenges.AIM To consolidate current knowledge on pathophysiology,clinical features,diagnostic approaches,and management strategies for DPHLS,providing a comprehensive overview and highlighting gaps for future research.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes guidelines,we systematically searched PubMed,ScienceDirect and Hinari databases using terms related to delayed post-hypoxic leukoencephalopathy.Inclusion criteria were original research articles,case reports,and case series involving human subjects with detailed clinical,neuroimaging,or pathological data on DPHLS.Data were extracted on study characteristics,participant demographics,clinical features,neuroimaging findings,pathological findings,treatment,and outcomes.The quality assessment was performed using the Joanna Briggs Institute critical appraisal checklist.RESULTS A total of 73 cases were reviewed.Common comorbidities included schizoaffective disorder,bipolar disorder,hypertension,and substance use disorder.The primary causes of hypoxia were benzodiazepine overdose,opioid overdose,polysubstance overdose,and carbon monoxide(CO)poisoning.Symptoms frequently include decreased level of consciousness,psychomotor agitation,cognitive decline,parkinsonism,and encephalopathy.Neuroimaging commonly revealed diffuse T2 hyperintensities in cerebral white matter,sometimes involving the basal ganglia and the globus pallidus.Magnetic resonance spectroscopy often showed decreased N-acetylaspartate,elevated choline,choline-to-creatinine ratio,and normal or elevated lactate.Treatment is often supportive,including amantadine,an antioxidant cocktail,and steroids.Hyperbaric oxygen therapy may be beneficial in those with CO poisoning.Parkinsonism was often treated with levodopa.Most of the patients had substantial recovery over the course of months and many cases had some residual neurocognitive deficits.CONCLUSION DPHLS remains a complex and multifaceted condition with various etiologies and clinical manifestations.Early recognition and appropriate management are crucial to improving patient outcomes.Future research should focus on standardizing diagnostic criteria,using advanced imaging techniques,and exploring therapeutic interventions to improve understanding and treatment of DPHLS.Conducting prospective cohort studies and developing biomarkers for early diagnosis and monitoring will be essential to advance patient care.展开更多
Background:Anoxic brain injuries represent the main determinant of poor outcome after cardiac arrest(CA).Large animal models have been described to investigate new treatments during CA and post-resuscitation phase,but...Background:Anoxic brain injuries represent the main determinant of poor outcome after cardiac arrest(CA).Large animal models have been described to investigate new treatments during CA and post-resuscitation phase,but a detailed model that includes extensive neuromonitoring is lacking.Method:Before an electrically-induced 10-minute CA and resuscitation,46 adult pigs underwent neurosurgery for placement of a multifunctional probe(intracranial pressure or ICP,tissue oxygen tension or PbtO_(2) and cerebral temperature)and a bolt-based technique for the placement and securing of a regional blood flow probe and two sEEG electrodes;two modified cerebral microdialysis(CMD)probes were also inserted in the frontal lobes and accidental misplacement was prevented using a perforated head support.Result:42 animals underwent the CA procedure and 41 achieved the return of spontaneous circulation(ROSC).In 4 cases(8.6%)an adverse event took place during preparation,but only in two cases(4.3%)this was related to the neurosurgery.In 6 animals(13.3%)the minor complications that occurred resolved after probe repositioning.Conclusion:Herein we provide a detailed comprehensive neuromonitoring approach in a large animal model of CA that might help future research.展开更多
Systematic administration of anti-inflammatory cytokine interleukin 4(IL-4)has been shown to improve recovery after cerebral ischemic stroke.However,whether IL-4 affects neuronal excitability and how IL-4 improves isc...Systematic administration of anti-inflammatory cytokine interleukin 4(IL-4)has been shown to improve recovery after cerebral ischemic stroke.However,whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown.Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia-repertusion(I/R)injury.In multi-electrode array(MEA)recordings,IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons.IL-4 mRNA and protein expressions are upregulated after I/R injury.Genetic deletion of 11-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation(OGD)injury in cortical neurons.Conversely,supplemental IL-4 protects 11-4-/-cortical neurons against OGD injury.Mechanistically,cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4-/-mice.Furthermore,upregulation of Nav1.1 channel,and downregulations of KCa3.1 channel and a6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4-/-mice.Taken together,our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury,thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.展开更多
文摘BACKGROUND Delayed post hypoxic leukoencephalopathy syndrome(DPHLS),also known as Grinker’s myelinopathy,is a rare but significant neurological condition that manifests days to weeks after a hypoxic event.Characterized by delayed onset of neurological and cognitive deficits,DPHLS presents substantial diagnostic and therapeutic challenges.AIM To consolidate current knowledge on pathophysiology,clinical features,diagnostic approaches,and management strategies for DPHLS,providing a comprehensive overview and highlighting gaps for future research.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes guidelines,we systematically searched PubMed,ScienceDirect and Hinari databases using terms related to delayed post-hypoxic leukoencephalopathy.Inclusion criteria were original research articles,case reports,and case series involving human subjects with detailed clinical,neuroimaging,or pathological data on DPHLS.Data were extracted on study characteristics,participant demographics,clinical features,neuroimaging findings,pathological findings,treatment,and outcomes.The quality assessment was performed using the Joanna Briggs Institute critical appraisal checklist.RESULTS A total of 73 cases were reviewed.Common comorbidities included schizoaffective disorder,bipolar disorder,hypertension,and substance use disorder.The primary causes of hypoxia were benzodiazepine overdose,opioid overdose,polysubstance overdose,and carbon monoxide(CO)poisoning.Symptoms frequently include decreased level of consciousness,psychomotor agitation,cognitive decline,parkinsonism,and encephalopathy.Neuroimaging commonly revealed diffuse T2 hyperintensities in cerebral white matter,sometimes involving the basal ganglia and the globus pallidus.Magnetic resonance spectroscopy often showed decreased N-acetylaspartate,elevated choline,choline-to-creatinine ratio,and normal or elevated lactate.Treatment is often supportive,including amantadine,an antioxidant cocktail,and steroids.Hyperbaric oxygen therapy may be beneficial in those with CO poisoning.Parkinsonism was often treated with levodopa.Most of the patients had substantial recovery over the course of months and many cases had some residual neurocognitive deficits.CONCLUSION DPHLS remains a complex and multifaceted condition with various etiologies and clinical manifestations.Early recognition and appropriate management are crucial to improving patient outcomes.Future research should focus on standardizing diagnostic criteria,using advanced imaging techniques,and exploring therapeutic interventions to improve understanding and treatment of DPHLS.Conducting prospective cohort studies and developing biomarkers for early diagnosis and monitoring will be essential to advance patient care.
基金Dr Annoni F.has been supported by the"Fonds Erasme pour la Recherche Médicale"for the entire length of the project.
文摘Background:Anoxic brain injuries represent the main determinant of poor outcome after cardiac arrest(CA).Large animal models have been described to investigate new treatments during CA and post-resuscitation phase,but a detailed model that includes extensive neuromonitoring is lacking.Method:Before an electrically-induced 10-minute CA and resuscitation,46 adult pigs underwent neurosurgery for placement of a multifunctional probe(intracranial pressure or ICP,tissue oxygen tension or PbtO_(2) and cerebral temperature)and a bolt-based technique for the placement and securing of a regional blood flow probe and two sEEG electrodes;two modified cerebral microdialysis(CMD)probes were also inserted in the frontal lobes and accidental misplacement was prevented using a perforated head support.Result:42 animals underwent the CA procedure and 41 achieved the return of spontaneous circulation(ROSC).In 4 cases(8.6%)an adverse event took place during preparation,but only in two cases(4.3%)this was related to the neurosurgery.In 6 animals(13.3%)the minor complications that occurred resolved after probe repositioning.Conclusion:Herein we provide a detailed comprehensive neuromonitoring approach in a large animal model of CA that might help future research.
基金supported by research grants from the National Natural Science Foundation of China(81573410)the National Science and Technology Major Project(2018ZX09711001-004006,China)the Natural Sciences Foundation of Shandong Province(ZR2015QL008,China)awarded to Kewei Wang
文摘Systematic administration of anti-inflammatory cytokine interleukin 4(IL-4)has been shown to improve recovery after cerebral ischemic stroke.However,whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown.Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia-repertusion(I/R)injury.In multi-electrode array(MEA)recordings,IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons.IL-4 mRNA and protein expressions are upregulated after I/R injury.Genetic deletion of 11-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation(OGD)injury in cortical neurons.Conversely,supplemental IL-4 protects 11-4-/-cortical neurons against OGD injury.Mechanistically,cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4-/-mice.Furthermore,upregulation of Nav1.1 channel,and downregulations of KCa3.1 channel and a6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4-/-mice.Taken together,our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury,thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.